A225118 Triangle read by rows, coefficients of the generalized Eulerian polynomials A_{n, 4}(x) in descending order.
1, 3, 1, 9, 22, 1, 27, 235, 121, 1, 81, 1996, 3446, 620, 1, 243, 15349, 63854, 40314, 3119, 1, 729, 112546, 963327, 1434812, 422087, 15618, 1, 2187, 806047, 12960063, 37898739, 26672209, 4157997, 78117, 1, 6561, 5705752, 162711868, 840642408, 1151050534
Offset: 0
Examples
[0] 1 [1] 3*x + 1 [2] 9*x^2 + 22*x + 1 [3] 27*x^3 + 235*x^2 + 121*x + 1 [4] 81*x^4 + 1996*x^3 + 3446*x^2 + 620*x + 1 ... The triangle T(n, k) begins: n\k 0: 1 1: 3 1 2: 9 22 1 3: 27 235 121 1 4: 81 1996 3446 620 1 5: 243 15349 63854 40314 3119 1 6: 729 112546 963327 1434812 422087 15618 1 7: 2187 806047 12960063 37898739 26672209 4157997 78117 1 ... row n=8: 6561 5705752 162711868 840642408 1151050534 442372648 39531132 390616 1, row n=9: 19683 40156777 1955297356 16677432820 39523450714 29742429982 6818184988 367889284 1953115 1. ... - _Wolfdieter Lang_, Apr 12 2017
Links
- Peter Luschny, Generalized Eulerian polynomials.
- Zhe Wang and Zhi-Yong Zhu, The spiral property of q-Eulerian numbers of type B, The Australasian Journal of Combinatorics, Volume 87(1) (2023), Pages 198-202. See p. 199.
Crossrefs
Programs
-
Maple
gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x)); series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n): collect(simplify(%), x) end: seq(print(seq(coeff(gf(n, 4), x, n-k), k=0..n)), n=0..6); # Recurrence: P := proc(n,x) option remember; if n = 0 then 1 else (n*x+(1/4)*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x); expand(%) fi end: A225117 := (n,k) -> 4^n*coeff(P(n,x),x,n-k): seq(print(seq(A225117(n,k), k=0..n)), n=0..5); # Peter Luschny, Mar 08 2014
-
Mathematica
gf[n_, k_] := Module[{f, s}, f[x_, t_] := x*Exp[t*x/k]/(1-x*Exp[t*x]); s = Series[f[x, t], {t, 0, n+2}]; ((1-x)/x)^(n+1)*k^n*n!*SeriesCoefficient[s, {t, 0, n}]]; Table[Table[SeriesCoefficient[gf[n, 4], {x, 0, n-k}], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 27 2014, after Maple *)
-
Sage
@CachedFunction def EB(n, k, x): # Modified cardinal B-splines if n == 1: return 0 if (x < 0) or (x >= 1) else 1 return k*x*EB(n-1, k, x) + k*(n-x)*EB(n-1, k, x-1) def EulerianPolynomial(n, k): # Generalized Eulerian polynomials R.
= ZZ[] if x == 0: return 1 return add(EB(n+1, k, m+1/k)*x^m for m in (0..n)) [EulerianPolynomial(n, 4).coefficients()[::-1] for n in (0..5)]
Formula
G.f. of the polynomials is gf(n, k) = k^n*n!*(1/x-1)^(n+1)[t^n](x*e^(t*x/k)*(1-x*e(t*x))^(-1)) for k = 4; here [t^n]f(t,x) is the coefficient of t^n in f(t,x).
From Wolfdieter Lang, Apr 12 2017 : (Start)
E.g.f. of row polynomials (rising powers of x): (1-x)*exp(3*(1-x)*z)/(1-y*exp(4*(1-x)*z)), i.e. e.g.f. of the triangle.
E.g.f. for the row polynomials with falling powers of x (A_{n, 4}(x) of the name): (1-x)*exp((1-x)*z)/(1 - x*exp(4*(1-x)*z)).
T(n, k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n+1,k-j) * (3+4*j)^n, 0 <= k <= n.
Recurrence: T(n, k) = (4*(n-k) + 1)*T(n-1, k-1) + (3 + 4*k)*T(n-1, k), n >= 1, with T(n, -1) = 0, T(0, 0) = 1 and T(n, k) = 0 for n < k. (End)
In terms of Euler's triangle = A123125: T(n, k) = Sum_{m=0..n} (binomial(n, m)*3^(n-m)*4^m*Sum_{p=0..k} (-1)^(k-p)*binomial(n-m, k-p)*A123125(m, p)), 0 <= k <= n. - Wolfdieter Lang, Apr 13 2017
Comments