This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225119 #43 Feb 04 2025 22:55:34 %S A225119 8,7,4,0,1,9,1,8,4,7,6,4,0,3,9,9,3,6,8,2,1,6,1,3,1,9,6,6,3,0,3,7,3,1, %T A225119 3,7,8,9,4,2,5,1,6,5,0,4,7,7,2,0,7,7,2,0,9,3,8,9,4,0,5,6,7,9,3,3,5,9, %U A225119 6,8,6,2,3,5,6,8,0,4,7,5,0,0,7,6,7,6,5,1,7,7,6,5,3,8,0,9,6,9,7,8 %N A225119 Decimal expansion of Integral_{x=0..Pi/2} sin(x)^(3/2) dx. %D A225119 George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 195. %D A225119 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant p. 102 and Section 6.1 Gauss' Lemniscate Constant p. 422. %H A225119 G. C. Greubel, <a href="/A225119/b225119.txt">Table of n, a(n) for n = 0..10000</a> %H A225119 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %F A225119 Equals 1/3 * sqrt(2) * ellipticK(1/2), (defined as in Mathematica). %F A225119 Equals sqrt(2)/6 * Pi * hypergeom([1/2,1/2],[1],1/2). %F A225119 Equals gamma(1/4)^2/(6*sqrt(2*Pi)). %F A225119 Equals sqrt(Pi)*gamma(1/4)/(6*gamma(3/4)). %F A225119 Equals Integral_{0..1} (1-x^2)^(1/4) dx. %F A225119 Equals Integral_{0..1} sqrt(1-x^4) dx. - _Charles R Greathouse IV_, Aug 21 2017 %F A225119 Equals (2/3)*A085565. - _Peter Bala_, Oct 27 2019 %F A225119 Equals A062539/3. - _Hugo Pfoertner_, Dec 15 2024 %e A225119 0.87401918476403993682161319663037313789425165047720772093894... %p A225119 evalf((1/3)*sqrt(2)*EllipticK(1/sqrt(2)), 120); # _Vaclav Kotesovec_, Apr 22 2015 %t A225119 RealDigits[1/3*Sqrt[2]*EllipticK[1/2], 10, 100][[1]] %o A225119 (PARI) sqrt(Pi)*gamma(1/4)/(6*gamma(3/4)) \\ _G. C. Greubel_, Apr 01 2017 %o A225119 (PARI) ellK(sqrt(1/2))*sqrt(2)/3 \\ _Charles R Greathouse IV_, Feb 04 2025 %Y A225119 Cf. A062539, A068466, A093341, A085565. %K A225119 nonn,cons,easy %O A225119 0,1 %A A225119 _Jean-François Alcover_, Apr 29 2013