cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225121 Number of standard Young tableaux with shapes corresponding to partitions into distinct parts with minimal difference 2.

This page as a plain text file.
%I A225121 #19 Jul 02 2015 05:46:43
%S A225121 1,1,1,1,4,5,15,21,56,246,525,1573,5764,14092,41405,136995,772552,
%T A225121 2148290,8806629,31679365,155743665,495240074,2049655762,7403470138,
%U A225121 32627363920,207316068370,784695179515,3721285661481,16967347935561,82192321793926,455572563875425
%N A225121 Number of standard Young tableaux with shapes corresponding to partitions into distinct parts with minimal difference 2.
%H A225121 Alois P. Heinz, <a href="/A225121/b225121.txt">Table of n, a(n) for n = 0..120</a>
%H A225121 Wikipedia, <a href="http://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%p A225121 h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
%p A225121       add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
%p A225121     end:
%p A225121 g:= proc(n, i, l) local s; s:=ceil(i*(i+2)/4);
%p A225121       `if`(n=s, h([l[], seq(i-2*j, j=0..iquo(i-1,2))]), `if`(n>s, 0,
%p A225121        g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-2, [l[], i]))))
%p A225121     end:
%p A225121 a:= n-> g(n, n, []):
%p A225121 seq(a(n), n=0..35);  # _Alois P. Heinz_, Apr 29 2013
%t A225121 h[l_List] := Module[{n}, n = Length[l]; Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := Module[{s}, s = Ceiling[i*(i+2)/4]; If[n==s, h[Join[l, Table[i-2*j, {j, 0, Quotient[i-1, 2]}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-2, Append[l, i]]]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Jul 02 2015, after  _Alois P. Heinz_ *)
%Y A225121 Cf. A218293 (tableaux with shapes corresponding to partitions into distinct parts).
%Y A225121 Cf. A000085 (standard Young tableaux for all shapes).
%K A225121 nonn
%O A225121 0,5
%A A225121 _Joerg Arndt_, Apr 29 2013