This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225125 #33 Jun 16 2025 12:16:44 %S A225125 1,6,9,2,9,9,2,4,6,8,4,1,3,6,0,1,2,4,4,6,7,8,0,1,3,8,3,4,8,9,8,1,0,8, %T A225125 7,0,8,0,7,8,6,9,8,6,7,1,5,6,8,0,7,2,3,4,9,5,6,8,8,0,1,5,7,7,8,9,4,7, %U A225125 6,4,3,7,2,1,3,1,9,8,7,9,8,7,2,7,9,1,8,7,3,6,3,9,6,3,5,4,4,9,4,2 %N A225125 Decimal expansion of Integral_{x=0..Pi/2} x^3*cosec(x) dx. %C A225125 The simpler Integral_{x=0..Pi/2} x*cosec(x) dx evaluates as 2*Catalan. %H A225125 G. C. Greubel, <a href="/A225125/b225125.txt">Table of n, a(n) for n = 1..10000</a> %H A225125 StackExchange, <a href="http://math.stackexchange.com/questions/302087/a-integral-with-polygamma">An integral with PolyGamma.</a> %F A225125 Equals 3*Catalan*Pi^2/2-1/128*(polygamma(3, 1/4)-polygamma(3, 3/4)). %e A225125 1.6929924684136012446780138348981087080786986715680723495688... %t A225125 3*Catalan*Pi^2/2-1/128*(PolyGamma[3, 1/4]-PolyGamma[3, 3/4]); (* or *) %t A225125 3*Catalan*Pi^2/2-3/64*(Zeta[4, 1/4]-Zeta[4, 3/4]) // RealDigits[#, 10, 100] & // First %t A225125 RealDigits[Integrate[x^3 Csc[x],{x,0,Pi/2}],10,120][[1]] (* _Harvey P. Dale_, Jun 16 2025 *) %o A225125 (PARI) 3*Catalan*Pi^2/2-3/64*(zetahurwitz(4,1/4)-zetahurwitz(4,3/4)) \\ _Charles R Greathouse IV_, Jan 31 2018 %Y A225125 Cf. A006752, A221209. %K A225125 nonn,cons,easy %O A225125 1,2 %A A225125 _Jean-François Alcover_, Apr 30 2013