cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225130 Numerators of the convolutory inverse of the primes of the form 6m-1.

This page as a plain text file.
%I A225130 #5 Apr 30 2013 12:13:32
%S A225130 1,-11,36,-36,36,-3786,63786,-405036,1215036,-4368786,45022536,
%T A225130 -380988786,2242736286,-7681046286,26949825036,-435049072536,
%U A225130 4543990507536,-25626723348786,80068989783786,-100028016375036,1579550678122536,-31186023693776286,252408733196148786
%N A225130 Numerators of the convolutory inverse of the primes of the form 6m-1.
%C A225130 Coefficients in 1/(1+g(x)), where g is the generating functions of the sequence of primes (5,11,17,23,29,...) of primes congruent to -1 mod 6.  For the convolutory inverse of the primes, see A030018.  Conjecture:  a(n+1)/a(n) -> -1.24066....
%H A225130 Clark Kimberling, <a href="/A225130/b225130.txt">Table of n, a(n) for n = 1..1000</a>
%e A225130 (5,11,17,23,29,...)**(1/5, -11/25, 36/125, -36/625, 36/3125,...) = (1,0,0,0,0,...), where ** denotes convolution.
%t A225130 q = {}; Do[If[PrimeQ[p = 6*n - 1], AppendTo[q, p]], {n, 0, 15000}]; r[n_] := q[[n]]; k[n_] := k[n] = 0; k[1] = 1; s[n_] := s[n] = (k[n] - Sum[r[k]*s[n - k + 1], {k, 2, n}])/r[1]; t = Table[s[n], {n, 1, 40}]; Numerator[t]
%Y A225130 Cf. A030018, A225127, A225131.
%K A225130 sign,easy
%O A225130 1,2
%A A225130 _Clark Kimberling_, Apr 29 2013