This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225132 #9 Mar 24 2021 08:46:45 %S A225132 1,-1,1,-2,3,-4,5,-8,12,-16,22,-32,45,-62,87,-124,175,-244,343,-484, %T A225132 679,-952,1339,-1884,2646,-3716,5224,-7342,10313,-14490,20365,-28618, %U A225132 40210,-56502,79400,-111570,156769,-220290,309553,-434974,611210,-858864,1206862 %N A225132 Convolutory inverse of the Thue Morse sequence. %C A225132 Coefficients in 1/(1+g(x)), where g is the generating function of the Thue-Morse sequence, A010060. Conjecture: a(n+1)/a(n) -> -1.405177106052... . %H A225132 Clark Kimberling, <a href="/A225132/b225132.txt">Table of n, a(n) for n = 1..1000</a> %e A225132 (1,1,0,1,0,0,1,1,...)**(1,-1,1,-2,3,-4,5,-8,...) = (1,0,0,0,0,...), where ** denotes convolution. %t A225132 r[n_] := If[n == 0, 0, If[Mod[n, 2] == 0, r[n/2], 1 - r[(n - 1)/2]]]; Table[r[n], {n, 1, 30}]; (* A010060 *) k[n_] := k[n] = 0; k[1] = 1; s[n_] := s[n] = (k[n] - Sum[r[k]*s[n - k + 1], {k, 2, n}])/r[1]; Table[s[n], {n, 1, 60}] %Y A225132 Cf. A030018, A010060. %K A225132 sign %O A225132 1,4 %A A225132 _Clark Kimberling_, Apr 29 2013