cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225135 Squares that are a concatenation of primes.

Original entry on oeis.org

25, 225, 289, 361, 529, 729, 2025, 2401, 2601, 2809, 3025, 4761, 5041, 5329, 5929, 7225, 7569, 11025, 11449, 11881, 13225, 15129, 19881, 20449, 21609, 22801, 23409, 24649, 25281, 26569, 27225, 29241, 29929, 31329, 32041, 32761, 34969, 36481, 39601, 47089
Offset: 1

Views

Author

Keywords

Comments

Lim inf a(n)/n^2 >= 2. Is it finite? - Charles R Greathouse IV, Apr 30 2013

Examples

			25 = 5^2 and can be separated into two prime numbers: 2|5.
231361 = 481^2 and can be separated into prime numbers in six ways: 2|3|1361, 2|3|13|61, 2|31|3|61, 2|313|61, 23|1361, and 23|13|61.
Leading zeros are allowed: 2025 = 2|02|5.
		

Crossrefs

Programs

  • Mathematica
    r[d_] := Catch@ Block[{z = Length@d}, z<1 || Do[ If[ PrimeQ@ FromDigits@ Take[d, i] && r@ Take[d, i-z], Throw@ True], {i, z}]]; Select[ Range[1000]^2, r@ IntegerDigits@ # &] (* Giovanni Resta, Apr 30 2013 *)
  • PARI
    has(n)=if(isprime(n),return(1)); if(n<202,return(isprime(n%10) && isprime(n\10))); my(k=n%10,v);if(k==5||k==2,return(if(n<6,1,n\=10;has(n/10^valuation(n,10)))));if(k%2==0,return(0));v=digits(n);for(i=1,#v,if(isprime(n%10^i) && has(n\10^i), return(1))); 0
    forstep(n=5,1e3,2,if(has(n^2),print1(n^2", ")))
    \\ Charles R Greathouse IV, Apr 30 2013
  • R
    library(gmp); isprime2=function(x) isprime(x)>0
    splithasproperty<-function(n,FUN,curdig=1,res=list(),curspl=c()) {
    no0<-function(s){ while(substr(s,1,1)=="0" & nchar(s)>1) s=substr(s,2,nchar(s)); s}
        s=as.character(n)
        if(curdig>nchar(s)) return(res)
        if(length(curspl)>0) if(FUN(as.bigz(no0(substr(s,curdig,nchar(s)))))) res[[length(res)+1]]=curspl
        for(i in curdig:nchar(s))
            if(FUN(as.bigz(no0(substr(s,curdig,i)))))
                res=splithasproperty(n,FUN,i+1,res,c(curspl,i))
        res
    }
    which(sapply(1:100,function(x) length(splithasproperty(x^2,isprime2)))>0)^2