A225136 Numbers that are concatenations of triprimes.
88, 128, 188, 208, 278, 288, 308, 428, 448, 458, 508, 528, 638, 668, 688, 708, 758, 768, 788, 808, 812, 818, 820, 827, 828, 830, 842, 844, 845, 850, 852, 863, 866, 868, 870, 875, 876, 878, 888, 892, 898, 899, 928, 988, 998, 1028, 1058, 1108, 1148, 1168, 1178
Offset: 1
Examples
88 = 8|8, both of which are triprime because 8=2*2*2. 458 = 45 | 8 = 3*3*5 | 2*2*2. 12428 can be split into triprimes in three ways: 12|428, 12|42|8, and 124|28.
Links
- Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
- Christian N. K. Anderson, Table of n, a(n), all possible separations of a(n) into triprimes for n=1..10000.
Programs
-
R
library(gmp); istriprime=function(x) ifelse(x<8,F,length(factorize(x))==3) splithasproperty<-function(n,FUN,curdig=1,res=list(),curspl=c()) { no0<-function(s){ while(substr(s,1,1)=="0" & nchar(s)>1) s=substr(s,2,nchar(s)); s} s=as.character(n) if(curdig>nchar(s)) return(res) if(length(curspl)>0) if(FUN(as.bigz(no0(substr(s,curdig,nchar(s)))))) res[[length(res)+1]]=curspl for(i in curdig:nchar(s)) if(FUN(as.bigz(no0(substr(s,curdig,i))))) res=splithasproperty(n,FUN,i+1,res,c(curspl,i)) res } which(sapply(1:500,function(x) length(splithasproperty(x,istriprime)))>0)