cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225143 Primes from merging of 10 successive digits in decimal expansion of Pi^2/6.

This page as a plain text file.
%I A225143 #15 Feb 16 2025 08:33:19
%S A225143 9499012067,4990120679,3040043189,1896233719,2337190679,9628724687,
%T A225143 2510068721,8721400547,9681155879,5587948903,7564558769,9632356367,
%U A225143 3235636709,3200805163,4445184059,3876314227,2276587939,1979084773,9420451591,9120818099,9345444877
%N A225143 Primes from merging of 10 successive digits in decimal expansion of Pi^2/6.
%C A225143 Leading zeros are not permitted, so each prime is 10 digits in length. The terms are listed in the order in which they occur.
%H A225143 Bruno Berselli, <a href="/A225143/b225143.txt">Table of n, a(n) for n = 1..1000</a>
%H A225143 Simon Plouffe, <a href="http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap96.html">Zeta(2) or Pi^2/6 to 10000 digits</a>
%H A225143 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RiemannZetaFunctionZeta2.html">Riemann Zeta Function zeta(2)</a>
%t A225143 With[{len = 10}, FromDigits /@ Select[Partition[RealDigits[Zeta[2], 10, 500][[1]], len, 1], PrimeQ[FromDigits[#]] && IntegerLength[FromDigits[#]] == len &]]
%Y A225143 Cf. A013661, A105375 - A105382.
%Y A225143 Cf. A105383.
%K A225143 nonn,base
%O A225143 1,1
%A A225143 _Bruno Berselli_, Apr 30 2013