This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225152 #16 Jul 12 2023 11:07:52 %S A225152 2,0,2,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A225152 1,1,1,1,1,1 %N A225152 Let b(k) be A036378, then a(n) is the number of b(k) terms such that 2^n < b(k) <= 2^(n+1). %C A225152 A036378 is a complete sequence. %e A225152 a(7) = 2 as between 128 and 256 there are 2 terms (A036378) namely 137 and 255. %t A225152 getterm[n2_] := PrimePi[2^(n2+1)]-PrimePi[2^n2]; %t A225152 termcount[n3_] := (m1=0; While[getterm[m1]<=2^n3, m1++]; m1); %t A225152 Table[termcount[p+1]-termcount[p], {p, 0, 39}] %Y A225152 Cf. A036378, A052005. %K A225152 nonn,more %O A225152 0,1 %A A225152 _Frank M Jackson_, Apr 30 2013