A225162 Denominators of the sequence of fractions f(n) defined recursively by f(1) = 10/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
1, 9, 91, 9181, 92480761, 9304615055139121, 93529710772930377727152664652641, 9394835719974970982728198049552322910011762062750179997188274881
Offset: 1
Keywords
Examples
f(n) = 10, 10/9, 100/91, 10000/9181, ... 10 + 10/9 = 10 * 10/9 = 100/9; 10 + 10/9 + 100/91 = 10 * 10/9 * 100/91 = 10000/819; ...
Programs
-
Maple
b:=n->10^(2^(n-2)); # n > 1 b(1):=10; p:=proc(n) option remember; p(n-1)*a(n-1); end; p(1):=1; a:=proc(n) option remember; b(n)-p(n); end; a(1):=1; seq(a(i),i=1..8);
Formula
a(n) = 10^(2^(n-2)) - product(a(i),i=1..n-1), n > 1 and a(1) = 1.
a(n) = 10^(2^(n-2)) - p(n) with a(1) = 1 and p(n) = p(n-1)*a(n-1) with p(1) = 1.
Comments