A225160 Denominators of the sequence of fractions f(n) defined recursively by f(1) = 8/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
1, 7, 57, 3697, 15302113, 258902783918017, 73384158961115901868286873473, 5848244449673109813614947741525727934929692392922517757697
Offset: 1
Keywords
Examples
f(n) = 8, 8/7, 64/57, 4096/3697, ... 8 + 8/7 = 8 * 8/7 = 64/7; 8 + 8/7 + 64/57 = 8 * 8/7 * 64/57 = 4096/399; ...
Programs
-
Maple
b:=n->8^(2^(n-2)); # n > 1 b(1):=8; p:=proc(n) option remember; p(n-1)*a(n-1); end; p(1):=1; a:=proc(n) option remember; b(n)-p(n); end; a(1):=1; seq(a(i),i=1..9);
Formula
a(n) = 8^(2^(n-2)) - product(a(i),i=1..n-1), n > 1 and a(1) = 1.
a(n) = 8^(2^(n-2)) - p(n) with a(1) = 1 and p(n) = p(n-1)*a(n-1) with p(1) = 1.
Comments