A225178 The generalized Conway-Guy sequence d_2(n).
1, 2, 6, 16, 48, 140, 408, 1224, 3640, 10824, 32192, 96576, 288912, 864288, 2585584, 7735104, 23205312, 69551552, 208461504, 624806688, 1872691488, 5612903296, 16838709888, 50500659456, 151455567744, 454227600128, 1362265877376
Offset: 1
Keywords
Links
- Jaegug Bae and Sungjin Choi, A generalization of a subset-sum-distinct sequence, J. Korean Math. Soc. 40 (2003), no. 5, 757--768. MR1996839 (2004d:05198). See b(n).
Programs
-
Maple
b := proc(n) round(sqrt(2*n-2)) ; end proc: d := proc(k,n) option remember; if n = 1 then 1; else add( k*procname(k,i),i=n-b(n)..n-1 ) ; end if; end proc: A225178 := proc(n) d(2,n) ; end proc: # R. J. Mathar, Jul 09 2013
-
Mathematica
b[n_] := Round[Sqrt[2n-2]]; d[k_, n_] := d[k, n] = If[n == 1, 1, Sum[k*d[k, i], {i, n-b[n], n-1}]]; a[n_] := d[2, n]; Table[a[n], {n, 1, 27}] (* Jean-François Alcover, Feb 27 2024, after R. J. Mathar *)
Formula
Bae and Choi define this sequence via a collection of recurrences.