cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225184 Primes p with a primitive root that divides p+1.

This page as a plain text file.
%I A225184 #40 Jan 08 2024 09:35:15
%S A225184 2,3,5,11,13,17,19,29,37,41,53,59,61,67,83,89,97,101,107,109,113,131,
%T A225184 137,139,149,163,173,179,181,197,211,227,229,233,251,257,269,281,293,
%U A225184 307,317,347,349,353,373,379,389,401,419,421,433,443,449,461,467,491,499,509,521,523,541,547,557,563,569,587,593,601
%N A225184 Primes p with a primitive root that divides p+1.
%H A225184 Charles R Greathouse IV, <a href="/A225184/b225184.txt">Table of n, a(n) for n = 1..10000</a>
%H A225184 Arto Lepistö, Francesco Pappalardi and Kalle Saari, <a href="https://doi.org/10.1016/j.tcs.2007.03.029">Transposition Invariant Words</a>, Theoret. Comput. Sci., Vol. 380, No. 3 (2007), pp. 377-387.
%e A225184 The primitive roots modulo 97 are 5, 7, 10, 13, 14, 15, 17, 21, 23, 26, 29, 37, 38, 39, ..., and 7 divides 98, so 97 is a member of this sequence.
%o A225184 (PARI) forprime(p=2,1000, i=0; fordiv(p+1,X, if(znorder(Mod(X,p))==eulerphi(p), i=1)); if(i==1,print1(p", "))) \\ _V. Raman_, May 04 2013
%o A225184 (Magma) [p: p in PrimesUpTo(700) | exists{r: r in [1..p-1] | IsPrimitive(r,p) and IsZero((p+1) mod r)}]; // _Bruno Berselli_, May 10 2013
%Y A225184 Cf. A060749, A225185 (complement). A001122 is a subsequence.
%K A225184 nonn
%O A225184 1,1
%A A225184 _N. J. A. Sloane_, May 04 2013
%E A225184 More terms from _V. Raman_, May 04 2013