A225201 Triangle (read by rows) of coefficients of the polynomials (in ascending order) of the denominators of the generalized sequence s(n) of the sum resp. product of generalized fractions f(n) defined recursively by f(1) = m/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
1, -1, 1, -1, 2, -2, 1, -1, 4, -8, 10, -9, 6, -3, 1, -1, 8, -32, 84, -162, 244, -298, 302, -258, 188, -118, 64, -30, 12, -4, 1, -1, 16, -128, 680, -2692, 8456, -21924, 48204, -91656, 152952, -226580, 300664, -359992, 391232, -387820, 352074, -293685, 225696, -160120, 105024, -63750, 35832, -18654, 8994, -4014, 1656, -630, 220, -70, 20, -5, 1
Offset: 1
Examples
The triangle T(n,k), k = 0..2^(n-1)-1, begins 1; -1, 1; -1, 2, -2, 1; -1, 4, -8, 10, -9, 6, -3, 1; -1, 8, -32, 84, -162, 244, -298, 302, -258, 188, -118, 64, -30, 12, -4, 1;
Programs
-
Maple
b:=proc(n) option remember; b(n-1)-b(n-1)^2; end; b(1):=1/m; a:=n->m^(2^(i-1))*normal(b(i)); seq(op(PolynomialTools[CoefficientList](a(i),m,termorder=forward)),i=1..6);
Comments