cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225202 Number of aperiodic tilings of an n X 1 rectangle by tiles of dimension 1 X 1 and 2 X 1.

This page as a plain text file.
%I A225202 #19 Aug 24 2023 03:13:51
%S A225202 1,1,2,3,7,9,20,29,52,80,143,217,376,588,977,1563,2583,4116,6764,
%T A225202 10854,17688,28512,46367,74763,121385,196040,317756,513616,832039,
%U A225202 1345192,2178308,3522981,5702741,9224880,14930324,24153416,39088168,63239220,102333776,165569166,267914295,433476128,701408732
%N A225202 Number of aperiodic tilings of an n X 1 rectangle by tiles of dimension 1 X 1 and 2 X 1.
%C A225202 a(n) is the Möbius transform of Fibonacci(n+1).
%H A225202 Paul Tek, <a href="/A225202/b225202.txt">Table of n, a(n) for n = 1..1000</a>
%H A225202 Paul Tek, <a href="/A225202/a225202_1.png">Illustration of the first terms</a>.
%F A225202 a(p)+1 = Fibonacci(p+1) for any prime p.
%e A225202 A 4 x 1 rectangle can be tiled in 5 ways:
%e A225202   +-+-+-+-+  +---+-+-+  +-+---+-+  +-+-+---+      +---+---+
%e A225202   | | | | |  |   | | |  | |   | |  | | |   |      |   |   |
%e A225202   +-+-+-+-+, +---+-+-+, +-+---+-+, +-+-+---+ and  +---+---+.
%e A225202 The first tiling is 1-periodic, the last tiling is 2-periodic, while the others are not periodic. Hence a(4)=3.
%e A225202 Note that although the three remaining tilings are equivalent by circular shift, they are considered as distinct.
%t A225202 a[n_] := DivisorSum[n, MoebiusMu[n/#] * Fibonacci[#+1] &]; Array[a, 50] (* _Amiram Eldar_, Aug 22 2023 *)
%o A225202 (PARI) a(n)=sumdiv(n,d,moebius(n/d)*fibonacci(d+1))
%Y A225202 Cf. A000045, A001037.
%K A225202 nonn
%O A225202 1,3
%A A225202 _Paul Tek_, May 01 2013