This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225208 #25 Feb 16 2025 08:33:19 %S A225208 1,3,3,52,106,260,279,334,491,536,728,1161,5678,15183,41437,189034, %T A225208 281965,1118629,3473978,32869874,82525851,159312757,424570638, %U A225208 472381891,563118608,579529452,1426303902,2330077798,2991863700,25850322702,34547004920,37294688664 %N A225208 Engel expansion of the positive root of x^x^x^x = 2. %C A225208 It is not known if the positive root of x^x^x^x = 2 is a rational number and, in consequence, whether this sequence is finite or not. %D A225208 F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191. %H A225208 Alois P. Heinz, <a href="/A225208/b225208.txt">Table of n, a(n) for n = 1..100</a> %H A225208 F. Engel, <a href="/A006784/a006784.pdf">Entwicklung der Zahlen nach Stammbruechen</a>, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission. %H A225208 P. Erdős and Jeffrey Shallit, <a href="http://www.numdam.org/item?id=JTNB_1991__3_1_43_0">New bounds on the length of finite Pierce and Engel series</a>, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53. %H A225208 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EngelExpansion.html">Engel Expansion</a> %H A225208 Wikipedia, <a href="https://en.wikipedia.org/wiki/Engel_expansion">Engel Expansion</a> %H A225208 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration#Open_questions">Tetration, Open questions</a> %H A225208 <a href="/index/El#Engel">Index entries for sequences related to Engel expansions</a> %e A225208 1.44660143242986417459733398759766148... %p A225208 Digits:= 500: %p A225208 c:= solve(x^(x^(x^x))=2, x): %p A225208 engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), %p A225208 engel(r*ceil(1/r)-1, n-1)][]): %p A225208 engel(evalf(c), 39); %Y A225208 Cf. A225134 (decimal expansion), A225153 (continued fraction). %K A225208 nonn %O A225208 1,2 %A A225208 _Alois P. Heinz_, May 01 2013