cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225215 Floor of the Euclidean distance of a point on the (1, 1, 1; 1, 1, 1) 3D walk.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 31, 31, 32, 32, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 41, 41, 42, 42, 43, 43, 44, 45, 45, 46, 46, 47, 47, 48, 49, 49, 50, 50
Offset: 1

Views

Author

Jon Perry, May 02 2013

Keywords

Comments

Consider a standard 3-dimensional Euclidean lattice. We take 1 step along the positive x-axis, 1 along the positive y-axis, 1 along the positive z-axis, 1 along the positive x-axis, and so on. After 3, 6, 9, 12, 15 etc steps we have returned to the space diagonal (with equal x, y and z coordinates).
This sequence gives the floor of the Euclidean distance to the origin after n steps.

Crossrefs

Programs

  • JavaScript
    p = new Array(0, 0, 0);
    for (a = 1; a < 100; a++) {
    p[a%3] += 1;
    document.write(Math.floor(Math.sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2])) + ", ");
    }

Formula

a(n) ~ n/sqrt(3). - Charles R Greathouse IV, May 02 2013
a(n) = floor(sqrt(A008810(n))), where A008810(n) is the squared Euclidean distance after n steps. - R. J. Mathar, May 02 2013