A225223 Primes of the form p - 1, where p is a practical number (A005153).
3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 103, 107, 127, 131, 139, 149, 167, 179, 191, 197, 199, 223, 227, 233, 239, 251, 263, 269, 271, 293, 307, 311, 347, 359, 367, 379, 383, 389, 419, 431, 439, 449, 461, 463, 467, 479, 499, 503, 509
Offset: 1
Keywords
Examples
a(5)=17 as 18 is a practical number, 18-1=17 and it is the 5th such prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PracticalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Select[Table[Prime[n]+1, {n, 1, 200}], PracticalQ]-1 (* using T. D. Noe's program A005153 *)
-
PARI
isPractical(n)={ if(n%2,return(n==1)); my(f=factor(n),P=1); for(i=1,#f[,1]-1, P*=sigma(f[i,1]^f[i,2]); if(f[i+1,1]>P+1,return(0)) ); n>0 }; select(p->isPractical(p+1),primes(300)) \\ Charles R Greathouse IV, May 03 2013