This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225232 #29 Feb 12 2024 13:29:14 %S A225232 2,4,4,12,6,24,8,40,10,60,12,84,14,112,16,144,18,180,20,220,22,264,24, %T A225232 312,26,364,28,420,30,480,32,544,34,612,36,684,38,760,40,840,42,924, %U A225232 44,1012,46,1104,48,1200,50,1300,52,1404,54,1512,56,1624,58,1740,60,1860,62,1984 %N A225232 The number of FO3C2 moves required to restore a packet of n playing cards to its original state (order and orientation). %C A225232 Each FO3C2 move Flips Over the top 3 cards as a unit and then Cuts 2 cards from the top to bottom. - Mulcahy %D A225232 Colm Mulcahy, Mathematical Card Magic: Fifty-Two New Effects, A K Peters, 2013, chapter 9. %H A225232 Charles R Greathouse IV, <a href="/A225232/b225232.txt">Table of n, a(n) for n = 3..1000</a> %H A225232 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1). %F A225232 Assume n >=3. For odd n we have a(n) = n-1 and for even n we have a(n) = (n-2)n/2. Equivalently, a(2k+1) = 2k and a(2k) = 2k(k-1). %F A225232 a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). - _Colin Barker_, Jun 04 2014 %F A225232 G.f.: 2*x^3*(x^2-2*x-1) / ((x-1)^3*(x+1)^3). - _Colin Barker_, Jun 04 2014 %o A225232 (PARI) a(n)={ %o A225232 if(n<6,return(if(n>3,4,2))); %o A225232 n--; %o A225232 my(deck=vector(n,i,i),original=deck,steps); %o A225232 while(1, %o A225232 steps+=2; %o A225232 deck=concat(deck[5..n],-[deck[2],deck[1],deck[4],deck[3]]); %o A225232 if(deck==original,return(steps)) %o A225232 ) %o A225232 }; \\ _Charles R Greathouse IV_, May 03 2013 %o A225232 (PARI) a(n)=if(n%2,n-1,n*(n-2)/2) \\ _Charles R Greathouse IV_, May 06 2013 %o A225232 (PARI) Vec(2*x^3*(x^2-2*x-1)/((x-1)^3*(x+1)^3) + O(x^100)) \\ _Colin Barker_, Jun 04 2014 %Y A225232 The even numbered terms are A046092. %Y A225232 Cf. A106232. %K A225232 nonn,easy %O A225232 3,1 %A A225232 _Colm Mulcahy_, May 03 2013 %E A225232 a(10), a(12)-a(64) from _Charles R Greathouse IV_, May 03 2013