cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A210498 Prime numbers that become emirps when their least-significant-digit is deleted.

Original entry on oeis.org

131, 137, 139, 173, 179, 311, 313, 317, 373, 379, 719, 733, 739, 797, 971, 977, 1493, 1499, 1571, 1579, 1993, 1997, 1999, 3119, 3371, 3373, 3593, 7013, 7019, 7331, 7333, 7393, 7433, 7517, 7691, 7699, 9371, 9377, 9413, 9419, 9533, 9539, 9677, 9679, 9719, 9833
Offset: 1

Views

Author

Keywords

Comments

This sequence (like the emirps) experiences large gaps when the most-significant-digit is {2,4,5,6,8}.

Examples

			Example: a(1)=131, which becomes 13 upon deletion, which is an emirp.
		

Crossrefs

Programs

  • R
    library(gmp); isemirp<-function(x) isprime(x) & (j=paste(rev(unlist(strsplit(as.character(x),split=""))),collapse=""))!=x & isprime(j);i=as.bigz(0); y=as.bigz(rep(0,100)); len=0;
    while(len<100)
        if(isprime((i=nextprime(i))))
            if(isemirp(as.bigz(substr(i,1,nchar(as.character(i))-1))))
                y[(len=len+1)]=i

A214847 Primes that become emirps when their most-significant-digit is deleted.

Original entry on oeis.org

113, 131, 137, 173, 179, 197, 271, 313, 317, 331, 337, 373, 379, 397, 431, 479, 571, 613, 617, 631, 673, 773, 797, 937, 971, 997, 1013, 1031, 1097, 1709, 1733, 1907, 2017, 2113, 2179, 2311, 2347, 2389, 2953, 2971, 3037, 3079, 3167, 3347, 3359, 3389, 3701, 3709
Offset: 1

Views

Author

Keywords

Examples

			113 and 1013 are both in the sequence, because upon deletion they become 13, which is an emirp.
		

Crossrefs

Programs

  • R
    library(gmp); isemirp<-function(x) isprime(x) & (j=paste(rev(unlist(strsplit(as.character(x),split=""))),collapse=""))!=x & isprime(j);
    no0<-function(s){ while(substr(s,1,1)=="0" & nchar(s)>1) s=substr(s,2,nchar(s)); s}
    i=as.bigz(0); y=as.bigz(rep(0,100)); len=0;
    while(len<100)
    if(isemirp(as.bigz(no0(substr((i=nextprime(i)),2,200)))))
    y[(len=len+1)]=i

A225234 Primes whose internal digits are an emirp.

Original entry on oeis.org

1171, 1319, 1373, 1733, 1973, 1979, 2131, 2137, 2179, 2311, 2371, 2377, 2711, 2713, 2719, 2731, 2791, 2797, 2971, 3137, 3313, 3319, 3371, 3373, 3719, 3733, 3739, 3793, 3797, 4133, 4139, 4177, 4373, 4733, 4793, 4799, 4973, 5171, 5179, 5711, 5717, 5737, 5791
Offset: 1

Views

Author

Keywords

Comments

a(414) = 112019 is the first term with an internal even digit.

Examples

			Example: 1171 has the emirp 17 as its internal digits.
		

Crossrefs

Programs

  • R
    library(gmp); isemirp<-function(x) isprime(x) & (j=paste(rev(unlist(strsplit(as.character(x),split=""))),collapse=""))!=x & isprime(j);
    no0<-function(s){ while(substr(s,1,1)=="0" & nchar(s)>1) s=substr(s,2,nchar(s)); s}
    i=as.bigz(0); y=as.bigz(rep(0,100)); len=0;
    while(len<100) if(isemirp(as.bigz(no0(substr((i=nextprime(i)),2,nchar(as.character(i))-1))))) y[(len=len+1)]=i
Showing 1-3 of 3 results.