This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225243 #58 Jan 27 2022 21:04:24 %S A225243 1,2,3,2,2,5,2,3,3,7,2,2,2,5,2,3,5,11,2,3,2,3,5,13,2,3,7,3,7,2,2,17,2, %T A225243 2,3,19,2,5,2,5,2,3,5,11,2,3,5,7,11,23,2,3,2,3,2,3,5,13,2,3,5,11,13,2, %U A225243 3,7,2,3,5,7,13,29,2,3,7,3,7,31,2,2,2,17 %N A225243 Irregular triangle read by rows, where row n contains the distinct primes that are contained in the binary representation of n as substrings; first row = [1] by convention. %C A225243 Row n = primes in row n of tables A165416 or A119709. %H A225243 Reinhard Zumkeller, <a href="/A225243/b225243.txt">Rows n = 1..1024 of table, flattened</a> %H A225243 Michael De Vlieger, <a href="/A225243/a225243.png">Plot of pi(p) such that T(n,k) = p</a> for n = 1..4096. %e A225243 . n T(n,*) | in binary %e A225243 . --- --------------------|------------------------------------------- %e A225243 . 1: 1 | 00001: . %e A225243 . 2: 2 | 00100: ___10 %e A225243 . 3: 3 | 00011: ___11 %e A225243 . 4: 2 | 00100: __10_ %e A225243 . 5: 2 5 | 00101: ___10 _11__ %e A225243 . 6: 2 3 | 00110: ___10 __11_ %e A225243 . 7: 3 7 | 00111: __11_ __111 %e A225243 . 8: 2 | 01000: _10__ %e A225243 . 9: 2 | 01001: _10__ %e A225243 . 10: 2 5 | 01010: _10__ _101_ %e A225243 . 11: 2 3 5 11 | 01011: _10__ ___11 _101_ 01011 %e A225243 . 12: 2 3 | 01100: ___10 _11__ %e A225243 . 13: 2 3 5 13 | 01101: __10_ _11__ __101 01101 %e A225243 . 14: 2 3 7 | 01110: ___10 _11__ _111_ %e A225243 . 15: 3 7 | 01111: _11__ _111_ %e A225243 . 16: 2 | 10000: 10___ %e A225243 . 17: 2 17 | 10001: 10___ 10001 %e A225243 . 18: 2 | 10010: 10___ %e A225243 . 19: 2 3 19 | 10011: 10___ ___11 10011 %e A225243 . 20: 2 5 | 10100: 10___ 101__ %e A225243 . 21: 2 5 | 10101: 10___ 101__ %e A225243 . 22: 2 3 5 11 | 10110: 10___ __11_ 101__ 10110 %e A225243 . 23: 2 3 5 7 11 23 | 10111: 10___ __11_ 101__ __111 1011_ 10111 %e A225243 . 24: 2 3 | 11000: _10__ 11___ %e A225243 . 25: 2 3 | 11001: _10__ 11___ . %t A225243 Array[Union@ Select[FromDigits[#, 2] & /@ Rest@ Subsequences@ IntegerDigits[#, 2], PrimeQ] &, 34] /. {} -> {1} // Flatten (* _Michael De Vlieger_, Jan 26 2022 *) %o A225243 (Haskell) %o A225243 a225243 n k = a225243_tabf !! (n-1) !! (k-1) %o A225243 a225243_row n = a225243_tabf !! (n-1) %o A225243 a225243_tabf = [1] : map (filter ((== 1) . a010051')) (tail a165416_tabf) %o A225243 (Python) %o A225243 from sympy import isprime %o A225243 from itertools import count, islice %o A225243 def primess(n): %o A225243 b = bin(n)[2:] %o A225243 ss = (int(b[i:j], 2) for i in range(len(b)) for j in range(i+2, len(b)+1)) %o A225243 return sorted(set(k for k in ss if isprime(k))) %o A225243 def agen(): %o A225243 yield 1 %o A225243 for n in count(2): %o A225243 yield from primess(n) %o A225243 print(list(islice(agen(), 82))) # _Michael S. Branicky_, Jan 26 2022 %Y A225243 Cf. A078826 (row lengths), A078832 (left edge), A078833 (right edge), A004676, A007088. %K A225243 nonn,base,tabf %O A225243 1,2 %A A225243 _Reinhard Zumkeller_, Aug 14 2013