This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225245 #30 Feb 17 2024 02:45:48 %S A225245 1,1,1,1,0,1,2,1,0,0,1,1,1,1,1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,4,1,0,1, %T A225245 1,1,0,1,1,1,0,1,3,1,0,0,1,1,0,0,0,1,0,1,0,1,0,1,1,1,3,1,1,0,0,1,3,1, %U A225245 0,1,1,1,0,1,1,0,0,1,2,1,0,0,1,1,2,1,1 %N A225245 Number of partitions of n into distinct squarefree divisors of n. %C A225245 a(n) <= A033630(n); %C A225245 a(n) = A033630(n) iff n is squarefree: a(A005117(n)) = A033630(A005117(n)); %C A225245 a(A225353(n)) = 0; a(A225354(n)) > 0. %H A225245 Alois P. Heinz, <a href="/A225245/b225245.txt">Table of n, a(n) for n = 0..10000</a> (5000 terms from Reinhard Zumkeller) %H A225245 Noah Lebowitz-Lockard and Joseph Vandehey, <a href="https://arxiv.org/abs/2402.08119">On the number of partitions of a number into distinct divisors</a>, arXiv:2402.08119 [math.NT], 2024. See p. 2. %F A225245 a(n) = [x^n] Product_{d|n, mu(d) != 0} (1 + x^d), where mu() is the Moebius function (A008683). - _Ilya Gutkovskiy_, Jul 26 2017 %e A225245 a(2*3) = a(6) = #{6, 3+2+1} = 2; %e A225245 a(2*2*3) = a(12) = #{6+3+2+1} = 1; %e A225245 a(2*3*5) = a(30) = #{30, 15+10+5, 15+10+3+2, 15+6+5+3+1} = 4; %e A225245 a(2*2*3*5) = a(60) = #{30+15+10+5, 30+15+10+3+2, 30+15+6+5+3+1} = 3; %e A225245 a(2*3*7) = a(42) = #{42, 21+14+7, 21+14+6+1} = 3; %e A225245 a(2*2*3*7) = a(84) = #{42+21+14+7, 42+21+14+6+1} = 2. %t A225245 a[n_] := If[n == 0, 1, Coefficient[Product[If[MoebiusMu[d] != 0, 1+x^d, 1], {d, Divisors[n]}], x, n]]; %t A225245 Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Nov 08 2021, after _Ilya Gutkovskiy_ *) %o A225245 (Haskell) %o A225245 a225245 n = p (a206778_row n) n where %o A225245 p _ 0 = 1 %o A225245 p [] _ = 0 %o A225245 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m %Y A225245 Cf. A005117, A008683, A033630, A206778, A008966, A225244, A087188, A225353, A225354. %K A225245 nonn %O A225245 0,7 %A A225245 _Reinhard Zumkeller_, May 05 2013