cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225297 Numbers divisible by their last digit cubed.

Original entry on oeis.org

1, 11, 21, 31, 32, 41, 51, 61, 64, 71, 72, 81, 91, 101, 111, 112, 121, 125, 131, 141, 151, 152, 161, 171, 181, 191, 192, 201, 211, 216, 221, 231, 232, 241, 243, 251, 261, 271, 272, 281, 291, 301, 311, 312, 321, 331, 341, 351, 352, 361, 371, 375, 381, 384, 391
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that (k mod 10)^3 | k.
All numbers ending in 1 are trivially included in this sequence.
The sequence is { 1+10k, 32 + 40k, 243 + 270k, 64 + 320k, 125 + 250k, 216 + 1080k, 3087 + 3430k, 2048 + 2560k, 729 + 7290k ; k = 0,1,2,...}. - M. F. Hasler, Jan 31 2016
The asymptotic density of this sequence is 2201597407/16003008000 = 0.137573... . - Amiram Eldar, Aug 08 2023

Examples

			a(16) = 112 is divisible by 2^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400], (m = Mod[#, 10]) > 0 && Divisible[#, m^3] &] (* Amiram Eldar, Aug 08 2023 *)
  • PARI
    is(n)=n%10&&n%(n%10)^3==0 \\ M. F. Hasler, Jan 31 2016
  • R
    x=0; y=rep(0,100); len=0; isint<-function(x) x==as.integer(x); while(len<100) if((x=x+1)%%10>0) if(isint(x/(x%%10)^3)) y[(len=len+1)]=x