cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225298 Smallest pandigital number with exactly n prime factors (with multiplicity).

This page as a plain text file.
%I A225298 #9 May 06 2013 11:12:20
%S A225298 10123457689,10123456789,1023456879,1023456987,1023456897,1023456789,
%T A225298 1023456798,1023457896,1023486975,1023479856,1023458976,1023475968,
%U A225298 1024973568,1023579648,1024897536,1023657984,1032984576,1034698752,1093865472,1074659328,1072963584
%N A225298 Smallest pandigital number with exactly n prime factors (with multiplicity).
%C A225298 Smallest pandigital n-almost prime.
%F A225298 a(n) = MIN{k such that k is in A050278 and bigomega(k) = n}.
%F A225298 a(n) = MIN{k such that k is in A050278 and A001222(k) = n}.
%e A225298 a(1) = 10123457689 is the least prime pandigital number (A221646), that is, the smallest prime containing all the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
%e A225298 a(2) = 10123456789 = 919 * 11015731, the smallest pandigital semiprime.
%e A225298 a(3) = 1023456879, the smallest pandigital number (A171102) that is 3-almost prime (product of three primes with repetition).
%e A225298 a(4) = 1023456987 = 3^2 * 7 * 16245349, which is the smallest pandigital 4-almost prime.
%e A225298 a(5) = 1023456897 = 3^3 * 2417 * 15683.
%e A225298 a(6) = 1023456789 = 3^4 * 2221 * 5689.
%e A225298 a(7) = 1023456798 = 2 * 3^2 * 7 * 13 * 487 * 1283.
%e A225298 a(8) = 1023457896 = 2^3 * 3^3 * 59 * 80309.
%t A225298 a[n_] := Block[{k = If[n < 3, 10123456789, 1023456789]}, While[ Union@ IntegerDigits@ k != Range[0, 9] || Total[Last /@ FactorInteger[k]] != n, k++]; k]; Array[a, 10] (* _Giovanni Resta_, May 06 2013 *)
%Y A225298 Cf. A171102, A221646, A175845.
%K A225298 nonn,base,easy
%O A225298 1,1
%A A225298 _Jonathan Vos Post_, May 04 2013
%E A225298 a(2) corrected and a(9)-a(21) from _Giovanni Resta_, May 06 2013