A225310 T(n,k)=Number of nXk -1,1 arrays such that the sum over i=1..n,j=1..k of i*x(i,j) is zero and rows are nondecreasing (ways to put k thrusters pointing east or west at each of n positions 1..n distance from the hinge of a south-pointing gate without turning the gate).
0, 1, 0, 0, 1, 2, 1, 0, 3, 2, 0, 3, 6, 7, 0, 1, 0, 9, 16, 15, 0, 0, 3, 12, 31, 0, 35, 8, 1, 0, 17, 52, 113, 0, 87, 14, 0, 5, 22, 83, 0, 443, 474, 217, 0, 1, 0, 27, 122, 427, 0, 1787, 1576, 547, 0, 0, 5, 34, 175, 0, 2341, 5304, 7445, 0, 1417, 70, 1, 0, 41, 238, 1165, 0, 13333, 26498
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..1..1..1...-1.-1..1..1...-1.-1.-1..1....1..1..1..1...-1..1..1..1 ..1..1..1..1...-1..1..1..1...-1.-1.-1..1...-1.-1.-1.-1...-1.-1..1..1 .-1.-1.-1.-1....1..1..1..1...-1..1..1..1....1..1..1..1...-1..1..1..1 .-1.-1..1..1...-1.-1.-1.-1...-1.-1..1..1...-1.-1.-1..1...-1.-1.-1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for row n:
n=1: a(n) = a(n-2)
n=2: a(n) = a(n-2) +a(n-4) -a(n-6)
n=3: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5)
n=4: a(n) = a(n-1) +a(n-2) -2*a(n-5) +a(n-8) +a(n-9) -a(n-10)
n=5: [order 18]
n=6: [order 42]
n=7: [order 24]
n=8: [order 36]
Comments