cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225310 T(n,k)=Number of nXk -1,1 arrays such that the sum over i=1..n,j=1..k of i*x(i,j) is zero and rows are nondecreasing (ways to put k thrusters pointing east or west at each of n positions 1..n distance from the hinge of a south-pointing gate without turning the gate).

Original entry on oeis.org

0, 1, 0, 0, 1, 2, 1, 0, 3, 2, 0, 3, 6, 7, 0, 1, 0, 9, 16, 15, 0, 0, 3, 12, 31, 0, 35, 8, 1, 0, 17, 52, 113, 0, 87, 14, 0, 5, 22, 83, 0, 443, 474, 217, 0, 1, 0, 27, 122, 427, 0, 1787, 1576, 547, 0, 0, 5, 34, 175, 0, 2341, 5304, 7445, 0, 1417, 70, 1, 0, 41, 238, 1165, 0, 13333, 26498
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Table starts
..0....1....0......1.....0.......1......0........1......0.........1.......0
..0....1....0......3.....0.......3......0........5......0.........5.......0
..2....3....6......9....12......17.....22.......27.....34........41......48
..2....7...16.....31....52......83....122......175....238.......317.....410
..0...15....0....113.....0.....427......0.....1165......0......2591.......0
..0...35....0....443.....0....2341......0.....8221......0.....22351.......0
..8...87..474...1787..5304...13333..29638....60007.112790....199669..336342
.14..217.1576...7445.26498...77721.197440...449693.939130...1828785.3360554
..0..547....0..31593.....0..461973......0..3437315......0..17085339.......0
..0.1417....0.136351.....0.2791167......0.26700429......0.162204059.......0

Examples

			Some solutions for n=4 k=4
..1..1..1..1...-1.-1..1..1...-1.-1.-1..1....1..1..1..1...-1..1..1..1
..1..1..1..1...-1..1..1..1...-1.-1.-1..1...-1.-1.-1.-1...-1.-1..1..1
.-1.-1.-1.-1....1..1..1..1...-1..1..1..1....1..1..1..1...-1..1..1..1
.-1.-1..1..1...-1.-1.-1.-1...-1.-1..1..1...-1.-1.-1..1...-1.-1.-1..1
		

Crossrefs

Column 1 is A063865
Column 2 is A007576
Row 3 is A008810(n+1)

Formula

Empirical for row n:
n=1: a(n) = a(n-2)
n=2: a(n) = a(n-2) +a(n-4) -a(n-6)
n=3: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5)
n=4: a(n) = a(n-1) +a(n-2) -2*a(n-5) +a(n-8) +a(n-9) -a(n-10)
n=5: [order 18]
n=6: [order 42]
n=7: [order 24]
n=8: [order 36]