A225312 Number of 5 X n -1,1 arrays such that the sum over i=1..5,j=1..n of i*x(i,j) is zero and rows are nondecreasing (ways to put n thrusters pointing east or west at each of 5 positions 1..n distance from the hinge of a south-pointing gate without turning the gate).
0, 15, 0, 113, 0, 427, 0, 1165, 0, 2591, 0, 5053, 0, 8947, 0, 14759, 0, 23017, 0, 34347, 0, 49409, 0, 68967, 0, 93813, 0, 124851, 0, 163005, 0, 209317, 0, 264843, 0, 330765, 0, 408271, 0, 498681, 0, 603315, 0, 723633, 0, 861087, 0, 1017275, 0, 1193781, 0
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..1..1....1..1..1..1...-1..1..1..1....1..1..1..1...-1.-1.-1..1 .-1.-1.-1..1...-1.-1.-1.-1...-1..1..1..1...-1.-1.-1..1...-1..1..1..1 .-1.-1.-1.-1...-1.-1.-1.-1...-1.-1..1..1...-1.-1.-1..1...-1.-1..1..1 .-1.-1.-1..1....1..1..1..1...-1.-1.-1.-1....1..1..1..1...-1..1..1..1 ..1..1..1..1...-1.-1..1..1...-1..1..1..1...-1.-1.-1..1...-1.-1.-1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 5 of A225310.
Formula
Empirical: a(n) = 3*a(n-2) - 2*a(n-4) - 2*a(n-6) + 4*a(n-8) - 4*a(n-10) + 2*a(n-12) + 2*a(n-14) - 3*a(n-16) + a(n-18).
Empirical g.f.: x^2*(15 + 68*x^2 + 118*x^4 + 140*x^6 + 116*x^8 + 72*x^10 + 14*x^12 - 2*x^14 + x^16) / ((1 - x)^5*(1 + x)^5*(1 + x^2)^2*(1 + x^4)). - Colin Barker, Sep 05 2018