This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225328 #14 Feb 28 2017 22:35:45 %S A225328 1,1,9,343,130321,345025251,7858047974841,1447930954097073657, %T A225328 2255178731296086753063201,29588424532574699588724679418659, %U A225328 3308916781795356089160906125431831800049,3166064605712293355286523525163381509588445189997 %N A225328 a(n) = A002426(n)^n, where A002426 is the central trinomial coefficients. %C A225328 Logarithmic derivative of A168599 (upon ignoring the initial term, a(0), of this sequence). %H A225328 G. C. Greubel, <a href="/A225328/b225328.txt">Table of n, a(n) for n = 0..46</a> %F A225328 L.g.f.: Sum_{n>=1} a(n)*x^n/n = log( Sum_{n>=0} A168599(n)*x^n ). %e A225328 L.g.f.: L(x) = x + 9*x^2/2 + 343*x^3/3 + 130321*x^4/4 + 345025251*x^5/5 + ... %e A225328 where exponentiation is an integer series: %e A225328 exp(L(x)) = 1 + x + 5*x^2 + 119*x^3 + 32707*x^4 + 69038213*x^5 + 1309743837515*x^6 + ... + A168599(n)*x^n + ... %t A225328 a[n_] := If[n < 0, 0, 3^n Hypergeometric2F1[1/2, -n, 1, 4/3]]; Table[a[n]^n, {n, 0, 50}] (* _G. C. Greubel_, Feb 27 2017 *) %o A225328 (PARI) {a(n)=sum(k=0,n, binomial(n, k)*binomial(k, n-k))^n} %o A225328 for(n=0,20,print1(a(n),", ")) %Y A225328 Cf. A168599, A002426. %K A225328 nonn %O A225328 0,3 %A A225328 _Paul D. Hanna_, Aug 03 2013