A225385 Construct sequences P,Q,R by the rules: Q = first differences of P, R = second differences of P, P starts with 1,3,9, Q starts with 2,6, R starts with 4; at each stage the smallest number not yet present in P,Q,R is appended to R. Sequence gives P.
1, 3, 9, 20, 38, 64, 100, 148, 209, 284, 374, 480, 603, 745, 908, 1093, 1301, 1533, 1790, 2074, 2386, 2727, 3098, 3500, 3934, 4401, 4902, 5438, 6011, 6623, 7275, 7968, 8703, 9481, 10303, 11170, 12083, 13043, 14052, 15111, 16221, 17383, 18598, 19867, 21191, 22571, 24008, 25503, 27057, 28671, 30347, 32086, 33890, 35760, 37697, 39702, 41776, 43920
Offset: 1
Keywords
Programs
-
Maple
# Based on Christopher Carl Heckman's program for A225376. f:=proc(N) local h,dh,ddh,S,mex,i; h:=1,3,9; dh:=2,6; ddh:=4; mex:=5; S:={h,dh,ddh}; for i from 4 to N do while mex in S do S:=S minus {mex}; mex:=mex+1; od; ddh:=ddh,mex; dh:=dh,dh[-1]+mex; h:=h,h[-1]+dh[-1]; S:=S union {h[-1], dh[-1], ddh[-1]}; mex:=mex+1; od; RETURN([[h],[dh],[ddh]]); end; f(100);
-
Mathematica
f[N_] := Module[{P = {1, 3, 9}, Q = {2, 6}, R = {4}, S, mex = 5, i}, S = Join[P, Q, R]; For[i = 4, i <= N, i++, While[MemberQ[S, mex], S = S~Complement~{mex}; mex++]; AppendTo[R, mex]; AppendTo[Q, Q[[-1]] + mex]; AppendTo[P, P[[-1]] + Q[[-1]]]; S = S~Union~{P[[-1]], Q[[-1]], R[[-1]]}; mex++]; P]; f[100] (* Jean-François Alcover, Mar 06 2023, after Maple code *)
Comments