This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225391 #29 Sep 08 2022 08:46:04 %S A225391 1,1,2,3,5,8,14,23,38,63,104,172,285,472,781,1293,2140,3542,5863,9705, %T A225391 16064,26590,44013,72852,120588,199603,330392,546880,905221,1498363, %U A225391 2480159,4105273,6795236,11247786,18617851,30817120,51009909,84433939,139758925 %N A225391 Expansion of 1/(1 - x - x^2 - x^6 + x^8). %C A225391 Limiting ratio is 1.65525..., the largest real root of 1 - x^2 - x^6 - x^7 + x^8. %H A225391 G. C. Greubel, <a href="/A225391/b225391.txt">Table of n, a(n) for n = 0..1000</a> %H A225391 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,0,1,0,-1). %F A225391 a(n) = a(n-1) + a(n-2) + a(n-6) - a(n-8). - _Franck Maminirina Ramaharo_, Nov 02 2018 %t A225391 CoefficientList[Series[1/(1 - x - x^2 - x^6 + x^8), {x, 0, 50}], x] %t A225391 LinearRecurrence[{1,1,0,0,0,1,0,-1}, {1,1,2,3,5,8,14,23}, 100] (* _G. C. Greubel_, Nov 16 2016 *) %o A225391 (PARI) Vec(1/(1-x-x^2-x^6+x^8) + O(x^50)) \\ _G. C. Greubel_, Nov 16 2016 %o A225391 (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^2-x^6+x^8))); // _G. C. Greubel_, Nov 03 2018 %Y A225391 Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A173925, A174522, A175740, A175772, A175773, A175782, A181600, A204631, A225393, A225394, A225482, A225499. %K A225391 nonn,easy %O A225391 0,3 %A A225391 _Roger L. Bagula_, May 06 2013