cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225393 Expansion of 1/(1 - x - x^2 + x^6 - x^8).

This page as a plain text file.
%I A225393 #32 Apr 29 2025 14:39:07
%S A225393 1,1,2,3,5,8,12,19,30,47,74,116,183,288,453,713,1122,1766,2779,4373,
%T A225393 6882,10830,17043,26820,42206,66419,104522,164484,258845,407339,
%U A225393 641021,1008761,1587466,2498162,3931305,6186612,9735741,15320931,24110227,37941757,59708145
%N A225393 Expansion of 1/(1 - x - x^2 + x^6 - x^8).
%H A225393 G. C. Greubel, <a href="/A225393/b225393.txt">Table of n, a(n) for n = 0..1000</a>
%H A225393 Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Ramirez/ramirez19.html">Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants</a>, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See p. 8.
%H A225393 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,0,-1,0,1).
%F A225393 G.f.: 1/(1 - x - x^2 + x^6 - x^8).
%F A225393 a(n) = a(n-1) + a(n-2) - a(n-6) + a(n-8). - _Ilya Gutkovskiy_, Nov 16 2016
%t A225393 CoefficientList[Series[1/(1 - x - x^2 + x^6 - x^8), {x, 0, 50}], x]
%t A225393 LinearRecurrence[{1,1,0,0,0,-1,0,1},{1,1,2,3,5,8,12,19},50] (* _G. C. Greubel_, Nov 16 2016 *)
%o A225393 (PARI) Vec(1/(1-x-x^2+x^6-x^8) + O(x^50)) \\ _G. C. Greubel_, Nov 16 2016
%o A225393 (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^2+x^6-x^8))); // _G. C. Greubel_, Nov 03 2018
%Y A225393 Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A173925, A174522, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225394, A225482, A225499.
%K A225393 nonn,easy
%O A225393 0,3
%A A225393 _Roger L. Bagula_, May 06 2013