This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225413 #18 Apr 09 2024 05:37:46 %S A225413 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,3,0,0,0,0,6,12,6,0,0,0,0,10,30, %T A225413 30,10,0,0,0,0,15,60,91,60,15,0,0,0,0,21,105,215,215,105,21,0,0,0,0, %U A225413 28,168,435,590,435,168,28,0,0,0,0,36,252,791,1365,1365,791,252,36,0,0 %N A225413 Triangle read by rows: T(n,k) = (A101164(n,k) - A014473(n,k))/2. %C A225413 Has opposite parity to A140356, A155454. %H A225413 Reinhard Zumkeller, <a href="/A225413/b225413.txt">Rows n = 0..100 of table, flattened</a> %F A225413 T(n, k) = (A101164(n,k) - A014473(n,k))/2. %F A225413 T(n, k) = (A008288(n,k) - 2*A007318(n,k) + 1)/2. %F A225413 From _G. C. Greubel_, Apr 08 2024: (Start) %F A225413 T(n, n-k) = T(n, k). %F A225413 Sum_{k=0..n} T(n, k) = (A000129(n+1) + n + 1 - 2^(n+1))/2. %F A225413 Sum_{k=0..n} (-1)^k*T(n, k) = A121262(n) - [n=0]. (End) %e A225413 Triangle begins as: %e A225413 0; %e A225413 0, 0; %e A225413 0, 0, 0; %e A225413 0, 0, 0, 0; %e A225413 0, 0, 1, 0, 0; %e A225413 0, 0, 3, 3, 0, 0; %e A225413 0, 0, 6, 12, 6, 0, 0; %e A225413 0, 0, 10, 30, 30, 10, 0, 0; %e A225413 0, 0, 15, 60, 91, 60, 15, 0, 0; %e A225413 0, 0, 21, 105, 215, 215, 105, 21, 0, 0; %e A225413 0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0; %e A225413 0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0; %e A225413 0, 0, 45, 360, 1330, 2800, 3571, 2800, 1330, 360, 45, 0, 0; %e A225413 0, 0, 55, 495, 2106, 5250, 8197, 8197, 5250, 2106, 495, 55, 0, 0; %t A225413 T[n_, k_]:= ((-1)^(n-k)*Hypergeometric2F1[-n+k,k+1,1,2] - 2*Binomial[n, k] +1)/2; %t A225413 Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Apr 08 2024 *) %o A225413 (Haskell) %o A225413 a225413 n k = a225413_tabl !! n !! k %o A225413 a225413_row n = a225413_tabl !! n %o A225413 a225413_tabl = map (map (`div` 2)) $ %o A225413 zipWith (zipWith (-)) a101164_tabl a014473_tabl %o A225413 -- _Reinhard Zumkeller_, Jul 30 2013 %o A225413 (Magma) %o A225413 A008288:= func< n,k | (&+[Binomial(n-j, j)*Binomial(n-2*j, k-j): j in [0..k]]) >; %o A225413 A225413:= func< n,k | (A008288(n,k) - 2*Binomial(n,k) + 1)/2 >; %o A225413 [A225413(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 08 2024 %o A225413 (SageMath) %o A225413 def A008288(n,k): return sum(binomial(n-j,j)*binomial(n-2*j,k-j) for j in range(k+1)) %o A225413 def A225413(n,k): return (A008288(n,k) -2*binomial(n,k) +1)//2 %o A225413 flatten([[A225413(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Apr 08 2024 %Y A225413 Cf. A000129, A007318, A008288, A014473, A101164, A121262, A140356, A155454. %Y A225413 3rd column = A000217 (triangular numbers). %Y A225413 4th column = A027480 (n(n+1)(n+2)/2). %K A225413 nonn,easy,tabl %O A225413 0,18 %A A225413 _Jeremy Gardiner_, Jul 28 2013