This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225415 #14 Jun 13 2025 07:41:49 %S A225415 1,1,58,1,1,1556,12006,1556,1,1,39054,1461615,5647300,1461615,39054,1, %T A225415 1,976552,135028828,1838120344,4873361350,1838120344,135028828,976552, %U A225415 1,1,24414050,11462721645,414730580760,3221733789330,6783391017228,3221733789330,414730580760,11462721645,24414050,1 %N A225415 Triangle read by rows: absolute values of odd-numbered rows of A225434. %H A225415 G. C. Greubel, <a href="/A225415/b225415.txt">Rows n = 1..50 of the irregular triangle, flattened</a> %F A225415 T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142459(2*n, j+1). - _G. C. Greubel_, Mar 19 2022 %e A225415 Triangle begins: %e A225415 1; %e A225415 1, 58, 1; %e A225415 1, 1556, 12006, 1556, 1; %e A225415 1, 39054, 1461615, 5647300, 1461615, 39054, 1; %e A225415 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1; %t A225415 (* First program *) %t A225415 t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1,(m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]]; %t A225415 T[n_, k_]:= T[n, k] = t[n+1, k+1,4]; (* t(n,k,4) = A142459 *) %t A225415 Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n,1,14,2}]] %t A225415 (* Second program *) %t A225415 t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m+1)*t[n-1,k,m]]; (* t(n,k,4) = A142459 *) %t A225415 T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n,j+1,4], {j,0,k-1}]; %t A225415 Table[T[n, k], {n,12}, {k,2*n-1}]//Flatten (* _G. C. Greubel_, Mar 19 2022 *) %o A225415 (Sage) %o A225415 @CachedFunction %o A225415 def T(n, k, m): %o A225415 if (k==1 or k==n): return 1 %o A225415 else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m) %o A225415 def A142459(n, k): return T(n, k, 4) %o A225415 def A225415(n,k): return sum( (-1)^(k-j-1)*A142459(2*n, j+1) for j in (0..k-1) ) %o A225415 flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # _G. C. Greubel_, Mar 19 2022 %Y A225415 The m=4 triangle in the sequence A034870 (m=0), A171692 (m=1), A225076 (m=2), A225398 (m=3). %K A225415 nonn,tabf,easy %O A225415 1,3 %A A225415 _Roger L. Bagula_, May 07 2013 %E A225415 Edited by _N. J. A. Sloane_, May 11 2013