A225432 Twice the coefficient of sqrt(q) in e^h, where e is the fundamental unit and h is the class number of Q(sqrt(q)), q prime and congruent to 1 mod 4. (The coefficient lies in (1/2)Z, so twice it is an integer.)
1, 1, 2, 1, 2, 10, 1, 5, 250, 106, 1138, 2, 25, 146, 298, 5, 17, 1, 97, 253970, 2, 226, 3034, 9148450, 2050, 10, 157, 126890, 1, 14341370, 5, 110671282, 986, 7586, 530, 130, 173, 5129602, 11068353370, 21685, 694966754, 17883410, 5528222698, 17, 41, 11248618, 60037, 10, 242718010, 24514292738
Offset: 1
Keywords
References
- R. R. Bruner and J. P. C. Greenlees, The Connective K-theory of Finite Groups, Memoirs AMS, Vol. 165, No. 785, 2003.
- T. Mitsuhiro, T. Nakahara and T. Uehara, The Class Number Formula of a Real Quadratic Field and an Estimate of the Value of a Unit, Canadian Mathematical Bulletin, 38(1)(1995), 98-103.
Links
- Zichang Wang, Table of n, a(n) for n = 1..2000
- R. R. Bruner and J. P. C. Greenlees, The Connective K-theory of Finite Groups, Semantic Scholar.
- T. Mitsuhiro, T. Nakahara and T. Uehara, The Class Number Formula of a Real Quadratic Field and an Estimate of the Value of a Unit.
Programs
-
Magma
// Magma code to generate all terms for which the prime q is less than or equal to 4N+1 (an initial segment of the sequence). (Note that the brute force computation of the fundamental unit is very inefficient, and will have trouble producing the 39th term.) N := 40; pr := [4*n+1 : n in [1..N] | IsPrime(4*n+1)]; for i in [1..#pr] do q := pr[i]; Q
:= QuadraticField(q); h := ClassNumber(Q); x := 1; while not IsSquare(x*x*q-4) do x := x+1; end while; x := x/2; tr,y := IsSquare(x*x*q-1); e := y + x*s; eh := e^h; b := (eh-Trace(eh)/2)/s; print i,2*b; end for; -
Mathematica
(* e.g., first 270 terms *) Lq = Select[4*Range[1000] + 1, PrimeQ[#] &]; Lh = NumberFieldClassNumber[Sqrt[Lq]]; Le = NumberFieldFundamentalUnits[Sqrt[Lq]]; Transpose[RootReduce[(Le^(2 Lh) + 1)/(Sqrt[Lq] Le^Lh)]][[1]] (* Zichang Wang, Dec 15 2022 *)
Extensions
a(39) onward from Zichang Wang, Dec 15 2022
Comments