This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225465 #21 Feb 22 2025 06:39:46 %S A225465 1,2,2,9,12,3,64,96,36,4,625,1000,450,80,5,7776,12960,6480,1440,150,6, %T A225465 117649,201684,108045,27440,3675,252,7,2097152,3670016,2064384,573440, %U A225465 89600,8064,392,8,43046721,76527504,44641044,13226976,2296350,244944,15876,576,9 %N A225465 Triangular array read by rows: T(n, k) is the number of rooted forests on {1, 2, ..., n} in which one tree has been specially designated that contain exactly k trees; n >= 1, 1 <= k <= n. %C A225465 Row sums = 2n*(n+1)^(n-2) = A089946(offset). %C A225465 The average number of trees in each forest approaches 5/2 as n gets large. %C A225465 The rows give the coefficients of the derivatives of the Abel polynomials. - _Peter Luschny_, Feb 22 2025 %F A225465 T(n, k) = binomial(n-1, k-1)*n^(n-k)*k = A061356(n, k)*k(offset). %F A225465 E.g.f.: y*A(x)*exp(y*A(x)) where A(x) is e.g.f. for A000169. %e A225465 T(2,1)=2 T(2,2)=2 %e A225465 ...1'... ...2'... ...1'..2... ...1..2'... %e A225465 ...| ... ...| ... ........... ........... %e A225465 ...2 ... ...1 ... ........... ........... %e A225465 The root node is on top. The ' indicates the tree which has been specially designated. %e A225465 Triangle starts: %e A225465 [1] 1; %e A225465 [2] 2, 2; %e A225465 [3] 9, 12, 3; %e A225465 [4] 64, 96, 36, 4; %e A225465 [5] 625, 1000, 450, 80, 5; %e A225465 [6] 7776, 12960, 6480, 1440, 150, 6; %e A225465 [7] 117649, 201684, 108045, 27440, 3675, 252, 7; %e A225465 [8] 2097152, 3670016, 2064384, 573440, 89600, 8064, 392, 8; %e A225465 [9] 43046721, 76527504, 44641044, 13226976, 2296350, 244944, 15876, 576, 9; %t A225465 Table[Table[Binomial[n - 1, k - 1] n^(n - k) k, {k, 1, n}], {n, 1, 8}] // Grid %Y A225465 Cf. A061356, A089946 (row sums), A000169, A137452. %K A225465 nonn,tabl %O A225465 1,2 %A A225465 _Geoffrey Critzer_, May 08 2013