cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225467 Triangle read by rows, T(n, k) = 4^k*S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 3, 4, 9, 40, 16, 27, 316, 336, 64, 81, 2320, 4960, 2304, 256, 243, 16564, 63840, 54400, 14080, 1024, 729, 116920, 768496, 1071360, 485120, 79872, 4096, 2187, 821356, 8921136, 19144384, 13502720, 3777536, 430080, 16384, 6561, 5758240, 101417920, 322850304
Offset: 0

Views

Author

Peter Luschny, May 08 2013

Keywords

Comments

The definition of the Stirling-Frobenius subset numbers of order m is in A225468.
This is the Sheffer triangle (exp(3*x), exp(4*x) - 1). See also the P. Bala link under A225469, the Sheffer triangle (exp(3*x),(1/4)*(exp(4*x) - 1)), which is named there exponential Riordan array S_{(4,0,3)}. - Wolfdieter Lang, Apr 13 2017

Examples

			[n\k][  0,      1,       2,        3,        4,       5,      6,     7]
[0]     1,
[1]     3,      4,
[2]     9,     40,      16,
[3]    27,    316,     336,       64,
[4]    81,   2320,    4960,     2304,      256,
[5]   243,  16564,   63840,    54400,    14080,    1024,
[6]   729, 116920,  768496,  1071360,   485120,   79872,   4096,
[7]  2187, 821356, 8921136, 19144384, 13502720, 3777536, 430080, 16384.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence (see the Maple program): T(4, 2) = 4*T(3, 1) + (4*2+3)*T(3, 2) = 4*316 + 11*336 = 4960.
Boas-Buck recurrence for column k = 2, and n = 4: T(4, 2) = (1/2)*(2*(6 + 4*2)*T(3, 2) + 2*6*(-4)^2*Bernoulli(2)*T(2, 2)) = (1/2)*(28*336 + 12*16*(1/6)*16) = 4960. (End)
		

Crossrefs

Cf. A048993 (m=1), A154537 (m=2), A225466 (m=3). A225469 (scaled).
Cf. Columns: A000244, 4*A016138, 16*A018054. A225118.

Programs

  • Maple
    SF_SS := proc(n, k, m) option remember;
    if n = 0 and k = 0 then return(1) fi;
    if k > n or  k < 0 then return(0) fi;
    m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end:
    seq(print(seq(SF_SS(n, k, 4), k=0..n)), n=0..5);
  • Mathematica
    EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
  • PARI
    T(n, k) = sum(m=0, k, binomial(k, m)*(-1)^(m - k)*((3 + 4*m)^n)/k!);
    for(n = 0, 10, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 13 2017
    
  • Python
    from sympy import binomial, factorial
    def T(n, k): return sum(binomial(k, m)*(-1)**(m - k)*((3 + 4*m)**n)//factorial(k) for m in range(k + 1))
    for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 13 2017
  • Sage
    @CachedFunction
    def EulerianNumber(n, k, m) :
        if n == 0: return 1 if k == 0 else 0
        return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m)+(m*k+1)*EulerianNumber(n-1,k,m)
    def SF_SS(n, k, m):
        return add(EulerianNumber(n,j,m)*binomial(j,n-k) for j in (0..n))/factorial(k)
    def A225467(n): return SF_SS(n, k, 4)
    

Formula

T(n, k) = (1/k!)*sum_{j=0..n} binomial(j, n-k)*A_4(n, j) where A_m(n, j) are the generalized Eulerian numbers A225118.
For a recurrence see the Maple program.
T(n, 0) ~ A000244; T(n, 1) ~ A190541.
T(n, n) ~ A000302; T(n, n-1) ~ A002700.
From Wolfdieter Lang, Apr 13 2017: (Start)
T(n, k) = Sum_{m=0..k} binomial(k,m)*(-1)^(m-k)*((3+4*m)^n)/k!, 0 <= k <= n.
In terms of Stirling2 = A048993: T(n, m) = Sum_{k=0..n} binomial(n, k)* 3^(n-k)*4^k*Stirling2(k, m), 0 <= m <= n.
E.g.f. exp(3*z)*exp(x*(exp(4*z) - 1)) (Sheffer property).
E.g.f. column k: exp(3*x)*((exp(4*x) - 1)^k)/k!, k >= 0.
O.g.f. column k: (4*x)^k/Product_{j=0..k} (1 - (3 + 4*j)*x), k >= 0.
(End)
Boas-Buck recurrence for column sequence k: T(n, k) = (1/(n - k))*((n/2)*(6 + 4*k)*T(n-1, k) + k*Sum_{p=k..n-2} binomial(n, p)*(-4)^(n-p)*Bernoulli(n-p)*T(p, k)), for n > k >= 0, with input T(k, k) = 4^k. See a comment and references in A282629. An example is given below. - Wolfdieter Lang, Aug 11 2017