A225469 Triangle read by rows, S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
1, 3, 1, 9, 10, 1, 27, 79, 21, 1, 81, 580, 310, 36, 1, 243, 4141, 3990, 850, 55, 1, 729, 29230, 48031, 16740, 1895, 78, 1, 2187, 205339, 557571, 299131, 52745, 3689, 105, 1, 6561, 1439560, 6338620, 5044536, 1301286, 137592, 6524, 136, 1
Offset: 0
Examples
[n\k][ 0, 1, 2, 3, 4, 5, 6] [0] 1, [1] 3, 1, [2] 9, 10, 1, [3] 27, 79, 21, 1, [4] 81, 580, 310, 36, 1, [5] 243, 4141, 3990, 850, 55, 1, [6] 729, 29230, 48031, 16740, 1895, 78, 1.
Links
- Vincenzo Librandi, Rows n = 0..50, flattened
- P. Bala, A 3 parameter family of generalized Stirling numbers.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See pp. 8-9.
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
Programs
-
Maple
SF_S := proc(n, k, m) option remember; if n = 0 and k = 0 then return(1) fi; if k > n or k < 0 then return(0) fi; SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end: seq(print(seq(SF_S(n, k, 4), k=0..n)), n = 0..5);
-
Mathematica
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
Sage
@CachedFunction def EulerianNumber(n, k, m) : if n == 0: return 1 if k == 0 else 0 return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + (m*k+1)*EulerianNumber(n-1, k, m) def SF_S(n, k, m): return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/(factorial(k)*m^k) for n in (0..6): [SF_S(n, k, 4) for k in (0..n)]
Formula
T(n, k) = (sum_{j=0..n} binomial(j, n-k)*A_4(n, j)) / (4^k*k!) where A_4(n,j) = A225118.
For a recurrence see the Maple program.
From Wolfdieter Lang, Apr 13 2017: (Start)
E.g.f.: exp(3*z)*exp((x/4)*(exp(4*z -1))). Sheffer triangle (see a comment above).
E.g.f. column k: exp(3*x)*(exp(4*x) -1)^k/(4^k*k!), k >= 0 (Sheffer property).
O.g.f. column k: x^m/Product_{j=0..k} (1 - (3+4*j)*x), k >= 0.
(End)
Comments