cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225469 Triangle read by rows, S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 3, 1, 9, 10, 1, 27, 79, 21, 1, 81, 580, 310, 36, 1, 243, 4141, 3990, 850, 55, 1, 729, 29230, 48031, 16740, 1895, 78, 1, 2187, 205339, 557571, 299131, 52745, 3689, 105, 1, 6561, 1439560, 6338620, 5044536, 1301286, 137592, 6524, 136, 1
Offset: 0

Views

Author

Peter Luschny, May 16 2013

Keywords

Comments

The definition of the Stirling-Frobenius subset numbers: S_m(n, k) = (sum_{j=0..n} binomial(j, n-k)*A_m(n, j)) / (m^k*k!) where A_m(n, j) are the generalized Eulerian numbers (see the links for details).
This is the Sheffer triangle (exp(3*x),(1/4)*(exp(4*x -1))). See the P. Bala link where this is called exponential Riordan array S_{(4,0,3)}. - Wolfdieter Lang, Apr 13 2017

Examples

			[n\k][ 0,     1,     2,     3,    4,   5,  6]
[0]    1,
[1]    3,     1,
[2]    9,    10,     1,
[3]   27,    79,    21,     1,
[4]   81,   580,   310,    36,    1,
[5]  243,  4141,  3990,   850,   55,  1,
[6]  729, 29230, 48031, 16740, 1895, 78,  1.
		

Crossrefs

Cf. A048993 (m=1), A039755 (m=2), A225468 (m=3).
Cf. Columns: A000244, A016138, A018054.

Programs

  • Maple
    SF_S := proc(n, k, m) option remember;
    if n = 0 and k = 0 then return(1) fi;
    if k > n or k < 0 then return(0) fi;
    SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end:
    seq(print(seq(SF_S(n, k, 4), k=0..n)), n = 0..5);
  • Mathematica
    EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
  • Sage
    @CachedFunction
    def EulerianNumber(n, k, m) :
        if n == 0: return 1 if k == 0 else 0
        return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + (m*k+1)*EulerianNumber(n-1, k, m)
    def SF_S(n, k, m):
        return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/(factorial(k)*m^k)
    for n in (0..6): [SF_S(n, k, 4) for k in (0..n)]

Formula

T(n, k) = (sum_{j=0..n} binomial(j, n-k)*A_4(n, j)) / (4^k*k!) where A_4(n,j) = A225118.
For a recurrence see the Maple program.
T(n, 0) ~ A000244; T(n, 1) ~ A016138; T(n, 2) ~ A018054.
T(n, n) ~ A000012; T(n, n-1) ~ A014105.
From Wolfdieter Lang, Apr 13 2017: (Start)
E.g.f.: exp(3*z)*exp((x/4)*(exp(4*z -1))). Sheffer triangle (see a comment above).
E.g.f. column k: exp(3*x)*(exp(4*x) -1)^k/(4^k*k!), k >= 0 (Sheffer property).
O.g.f. column k: x^m/Product_{j=0..k} (1 - (3+4*j)*x), k >= 0.
(End)