This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225473 #22 Jul 12 2017 06:11:33 %S A225473 1,3,4,9,40,32,27,316,672,384,81,2320,9920,13824,6144,243,16564, %T A225473 127680,326400,337920,122880,729,116920,1536992,6428160,11642880, %U A225473 9584640,2949120,2187,821356,17842272,114866304,324065280,453304320,309657600,82575360,6561 %N A225473 Triangle read by rows, k!*S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0. %C A225473 The Stirling-Frobenius subset numbers are defined in A225468 (see also the Sage program). %H A225473 Vincenzo Librandi, <a href="/A225473/b225473.txt">Rows n = 0..50, flattened</a> %H A225473 Peter Luschny, <a href="http://www.luschny.de/math/euler/GeneralizedEulerianPolynomials.html">Generalized Eulerian polynomials.</a> %H A225473 Peter Luschny, <a href="http://www.luschny.de/math/euler/StirlingFrobeniusNumbers.html">The Stirling-Frobenius numbers.</a> %F A225473 For a recurrence see the Maple program. %F A225473 T(n, 0) ~ A000244; T(n, 1) ~ A190541; T(n, n) ~ A047053. %F A225473 From _Wolfdieter Lang_, Jul 12 2017: (Start) %F A225473 T(n, k) = A225467(n, k)*k! = A225469(n, k)*(4^k*k!), 0 <= k <= n. %F A225473 T(n, k) = Sum_{m=0..n} binomial(k,m)*(-1)^(k-m)*(3 + 4*m)^n. %F A225473 Recurrence: T(n, -1) = 0, T(0, 0) = 1, T(n, k) = 0 if n < k and T(n, k) = %F A225473 4*k*T(n-1, k-1) + (3 + 4*k)*T(n-1, k) for n >= 1, k = 0..n (see the Maple program). %F A225473 E.g.f. row polynomials R(n, x) = Sum_{m=0..n} T(n, k)*x^k: exp(3*z)/(1 - x*(exp(4*z) - 1)). %F A225473 E.g.f. column k: exp(3*x)*(exp(4*x) - 1)^k, k >= 0. %F A225473 O.g.f. column k: k!*(4*x)^k/Product_{j=0..k} (1 - (3 + 4*j)*x), k >= 0. %F A225473 (End) %e A225473 [n\k][0, 1, 2, 3, 4, 5, 6 ] %e A225473 [0] 1, %e A225473 [1] 3, 4, %e A225473 [2] 9, 40, 32, %e A225473 [3] 27, 316, 672, 384, %e A225473 [4] 81, 2320, 9920, 13824, 6144, %e A225473 [5] 243, 16564, 127680, 326400, 337920, 122880, %e A225473 [6] 729, 116920, 1536992, 6428160, 11642880, 9584640, 2949120. %p A225473 SF_SO := proc(n, k, m) option remember; %p A225473 if n = 0 and k = 0 then return(1) fi; %p A225473 if k > n or k < 0 then return(0) fi; %p A225473 m*k*SF_SO(n-1, k-1, m) + (m*(k+1)-1)*SF_SO(n-1, k, m) end: %p A225473 seq(print(seq(SF_SO(n, k, 4), k=0..n)), n = 0..5); %t A225473 EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]; Table[ SFSO[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 29 2013, translated from Sage *) %o A225473 (Sage) %o A225473 @CachedFunction %o A225473 def EulerianNumber(n, k, m) : %o A225473 if n == 0: return 1 if k == 0 else 0 %o A225473 return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+ (m*k+1)*EulerianNumber(n-1, k, m) %o A225473 def SF_SO(n, k, m): %o A225473 return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n)) %o A225473 for n in (0..6): [SF_SO(n, k, 4) for k in (0..n)] %Y A225473 Cf. A131689 (m=1), A145901 (m=2), A225472 (m=3). %K A225473 nonn,tabl %O A225473 0,2 %A A225473 _Peter Luschny_, May 17 2013