This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225475 #18 Jun 24 2015 08:17:34 %S A225475 1,1,1,3,4,2,15,23,18,6,105,176,172,96,24,945,1689,1900,1380,600,120, %T A225475 10395,19524,24278,20880,12120,4320,720,135135,264207,354662,344274, %U A225475 241080,116760,35280,5040,2027025,4098240,5848344,6228096,4993296,2956800,1229760 %N A225475 Triangle read by rows, k!*s_2(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0. %C A225475 The Stirling-Frobenius cycle numbers are defined in A225470. %H A225475 Vincenzo Librandi, <a href="/A225475/b225475.txt">Rows n = 0..50, flattened</a> %H A225475 Peter Luschny, <a href="http://www.luschny.de/math/euler/GeneralizedEulerianPolynomials.html">Generalized Eulerian polynomials.</a> %H A225475 Peter Luschny, <a href="http://www.luschny.de/math/euler/StirlingFrobeniusNumbers.html">The Stirling-Frobenius numbers.</a> %F A225475 For a recurrence see the Sage program. %F A225475 T(n, 0) ~ A001147; T(n, 1) ~ A004041. %F A225475 T(n, n) ~ A000142; T(n, n-1) ~ A001563. %F A225475 T(n,k) = A028338(n,k)*A000142(k). - _Philippe Deléham_, Jun 24 2015 %e A225475 [n\k][ 0, 1, 2, 3, 4, 5] %e A225475 [0] 1, %e A225475 [1] 1, 1, %e A225475 [2] 3, 4, 2, %e A225475 [3] 15, 23, 18, 6, %e A225475 [4] 105, 176, 172, 96, 24, %e A225475 [5] 945, 1689, 1900, 1380, 600, 120. %t A225475 SFCO[n_, k_, m_] := SFCO[n, k, m] = If[ k > n || k < 0, Return[0], If[ n == 0 && k == 0, Return[1], Return[ k*SFCO[n - 1, k - 1, m] + (m*n - 1)*SFCO[n - 1, k, m]]]]; Table[ SFCO[n, k, 2], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 02 2013, translated from Sage *) %o A225475 (Sage) %o A225475 @CachedFunction %o A225475 def SF_CO(n, k, m): %o A225475 if k > n or k < 0 : return 0 %o A225475 if n == 0 and k == 0: return 1 %o A225475 return k*SF_CO(n-1, k-1, m) + (m*n-1)*SF_CO(n-1, k, m) %o A225475 for n in (0..8): [SF_CO(n, k, 2) for k in (0..n)] %Y A225475 Cf. A028338, A225479 (m=1), A048594. %K A225475 nonn,tabl %O A225475 0,4 %A A225475 _Peter Luschny_, May 19 2013