This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225476 #22 Aug 07 2015 03:48:59 %S A225476 1,1,1,1,4,2,1,13,18,6,1,40,116,96,24,1,121,660,1020,600,120,1,364, %T A225476 3542,9120,9480,4320,720,1,1093,18438,74466,121800,94920,35280,5040,1, %U A225476 3280,94376,576576,1394064,1653120,1028160,322560,40320,1,9841,478440,4319160 %N A225476 Triangle read by rows, k!*2^k*S_2(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0. %C A225476 The Stirling-Frobenius subset numbers are defined in A225468 (see also the Sage program). %H A225476 Vincenzo Librandi, <a href="/A225476/b225476.txt">Rows n = 0..50, flattened</a> %H A225476 Peter Luschny, <a href="http://www.luschny.de/math/euler/GeneralizedEulerianPolynomials.html">Generalized Eulerian polynomials.</a> %H A225476 Peter Luschny, <a href="http://www.luschny.de/math/euler/StirlingFrobeniusNumbers.html">The Stirling-Frobenius numbers.</a> %H A225476 Shi-Mei Ma, Toufik Mansour, Matthias Schork, <a href="http://arxiv.org/abs/1308.0169">Normal ordering problem and the extensions of the Stirling grammar</a>, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12. %F A225476 T(n, k) = sum_{j=0..n} A_2(n, j)*binomial(j, n-k), where A_2(n, j) are the generalized Eulerian numbers of order m=2. %F A225476 For a recurrence see the Maple program. %e A225476 [n\k][0, 1, 2, 3, 4, 5 ] %e A225476 [0] 1, %e A225476 [1] 1, 1, %e A225476 [2] 1, 4, 2, %e A225476 [3] 1, 13, 18, 6, %e A225476 [4] 1, 40, 116, 96, 24, %e A225476 [5] 1, 121, 660, 1020, 600, 120. %p A225476 SF_SSO := proc(n, k, m) option remember; %p A225476 if n = 0 and k = 0 then return(1) fi; %p A225476 if k > n or k < 0 then return(0) fi; %p A225476 k*SF_SSO(n-1, k-1, m) + (m*(k+1)-1)*SF_SSO(n-1, k, m) end: %p A225476 seq(print(seq(SF_SSO(n, k, 2), k=0..n)), n = 0..5); %t A225476 EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n - k) + m - 1)*EulerianNumber[n - 1, k - 1, m] + (m*k + 1)*EulerianNumber[n - 1, k, m]]); SFSSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n - k], {j, 0, n}]/m^k; Table[ SFSSO[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 29 2013, translated from Sage *) %o A225476 (Sage) %o A225476 @CachedFunction %o A225476 def EulerianNumber(n, k, m) : %o A225476 if n == 0: return 1 if k == 0 else 0 %o A225476 return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+(m*k+1)*EulerianNumber(n-1, k, m) %o A225476 def SF_SSO(n, k, m): %o A225476 return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/m^k %o A225476 for n in (0..6): [SF_SSO(n, k, 2) for k in (0..n)] %Y A225476 T(n, 0) ~ A000012; T(n, 1) ~ A003462; T(n, 2) ~ A007798. %Y A225476 T(n, n) ~ A000142; T(n, n-1) ~ A001563. %Y A225476 Alternating row sum ~ A000364 (Euler secant numbers). %Y A225476 Cf. A225468, A131689 (m=1). %K A225476 nonn,tabl %O A225476 0,5 %A A225476 _Peter Luschny_, May 19 2013