cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A225478 Triangle read by rows, 4^k*s_4(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 3, 4, 21, 40, 16, 231, 524, 336, 64, 3465, 8784, 7136, 2304, 256, 65835, 180756, 170720, 72320, 14080, 1024, 1514205, 4420728, 4649584, 2346240, 613120, 79872, 4096, 40883535, 125416476, 143221680, 81946816, 25939200, 4609024, 430080, 16384, 1267389585, 4051444896, 4941537984, 3113238016, 1131902464, 246636544, 31768576, 2228224, 65536
Offset: 0

Views

Author

Peter Luschny, May 17 2013

Keywords

Comments

Triangle T(n,k), read by rows, given by (3, 4, 7, 8, 11, 12, 15, 16, ... (A014601)) DELTA (4, 0, 4, 0, 4, 0, 4, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 14 2015.

Examples

			[n\k][    0,       1,       2,       3,      4,     5,    6 ]
[0]       1,
[1]       3,       4,
[2]      21,      40,      16,
[3]     231,     524,     336,      64,
[4]    3465,    8784,    7136,    2304,    256,
[5]   65835,  180756,  170720,   72320,  14080,  1024,
[6] 1514205, 4420728, 4649584, 2346240, 613120, 79872, 4096.
		

Crossrefs

T(n, 0) ~ A008545; T(n, n) ~ A000302; T(n, n-1) ~ A002700.
row sums ~ A034176; alternating row sums ~ A008545.
Cf. A225471, A132393 (m=1), A028338 (m=2), A225477 (m=3).

Programs

  • Mathematica
    s[][0, 0] = 1; s[m][n_, k_] /; (k > n || k < 0) = 0; s[m_][n_, k_] := s[m][n, k] = s[m][n - 1, k - 1] + (m*n - 1)*s[m][n - 1, k];
    T[n_, k_] := 4^k*s[4][n, k];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
  • Sage
    @CachedFunction
    def SF_CS(n, k, m):
        if k > n or k < 0 : return 0
        if n == 0 and k == 0: return 1
        return m*SF_CS(n-1, k-1, m) + (m*n-1)*SF_CS(n-1, k, m)
    for n in (0..8): [SF_CS(n, k, 4) for k in (0..n)]

Formula

For a recurrence see the Sage program.
T(n,k) = 4^k * A225471(n,k). - Philippe Deléham, May 14 2015.
Showing 1-1 of 1 results.