This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225482 #30 Sep 08 2022 08:46:05 %S A225482 1,0,0,1,1,1,1,2,2,3,4,4,6,8,10,12,16,21,26,34,43,55,71,91,116,148, %T A225482 191,244,312,400,512,656,840,1076,1377,1764,2260,2893,3705,4745,6077, %U A225482 7782,9966,12763,16344,20932,26806,34328,43962,56300,72100,92333,118246 %N A225482 Expansion of 1/(1 - x^3 - x^4 - x^5 + x^8). %C A225482 Limiting ratio is 1.28064..., the largest real root of 1 - x^3 - x^4 - x^5 + x^8: 1.280638156267757596701902532710 is a candidate for the smallest degree-8 Salem number. %H A225482 G. C. Greubel, <a href="/A225482/b225482.txt">Table of n, a(n) for n = 0..1000</a> %H A225482 Michael Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a> %H A225482 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,1,0,0,-1). %F A225482 a(n) = a(n-3) + a(n-4) + a(n-5) - a(n-8). - _Franck Maminirina Ramaharo_, Nov 02 2018 %t A225482 CoefficientList[Series[1/(1 - x^3 - x^4 - x^5 + x^8), {x, 0, 50}], x] %t A225482 LinearRecurrence[{0,0,1,1,1,0,0,-1}, {1,0,0,1,1,1,1,2}, 100] (* _G. C. Greubel_, Nov 16 2016 *) %o A225482 (PARI) Vec(1/(1-x^3-x^4-x^5+x^8)+O(x^99)) \\ _Charles R Greathouse IV_, May 08 2013 %o A225482 (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^3-x^4-x^5+x^8))); // _G. C. Greubel_, Nov 03 2018 %Y A225482 Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A173925, A174522, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225499. %K A225482 nonn,easy %O A225482 0,8 %A A225482 _Roger L. Bagula_, May 08 2013 %E A225482 More terms from _Franck Maminirina Ramaharo_, Nov 02 2018