A225485 Number of partitions of n that have frequency depth k, an array read by rows.
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 4, 3, 1, 1, 4, 8, 1, 1, 3, 6, 9, 3, 1, 2, 8, 12, 7, 1, 3, 11, 17, 10, 1, 1, 11, 26, 17, 1, 5, 19, 25, 27, 1, 1, 17, 44, 38, 1, 3, 25, 53, 52, 1, 1, 3, 29, 63, 76, 4
Offset: 1
Examples
The first 9 rows: n = 1 .... 0 n = 2 .... 1..1 n = 3 .... 1..1..1 n = 4 .... 1..2..1..1 n = 5 .... 1..1..2..3 n = 6 .... 1..3..4..3 n = 7 .... 1..1..4..8..1 n = 8 .... 1..3..6..9..3 n = 9 .... 1..2..8.12..7 For the 7 partitions of 5, successive frequencies are shown here: 5 -> 1 (depth 1) 41 -> 11 -> 2 -> 1 (depth 3) 32 -> 11 -> 2 -> 1 (depth 3) 311 -> 12 -> 11 -> 2 -> 1 (depth 4) 221 -> 12 -> 11 -> 2 -> 1 (depth 4) 2111 -> 13 -> 11 -> 2 -> 1 (depth 4) 11111 -> 5 -> 1 (depth 2) Summary: 1 partition has depth 1; 1 has depth 2; 2 have 3; and 3 have 4, so that the row for n = 5 is 1..1..2..3 .
Links
- Alois P. Heinz, Rows n = 1..200, flattened (first 40 rows from Clark Kimberling)
Crossrefs
Programs
-
Mathematica
c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &] f[s_] := f[s] = Drop[FixedPointList[c, s], -2] t[s_] := t[s] = Length[f[s]] u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], i]], {i, 1, Length[IntegerPartitions[n]]}]; Flatten[Table[Count[u[n], k], {n, 2, 25}, {k, 1, Max[u[n]]}]]
Comments