A225487 Duplicate primes found by Rowland's recurrence in the order of their reappearance.
3, 5, 11, 7, 13, 101, 47, 53, 23, 19, 29, 37, 31, 41, 83, 73, 17, 43, 67, 157, 179, 167, 79, 443, 139, 113, 137, 97, 233, 61, 823, 71, 103, 151, 199, 499, 181, 229, 353, 313, 1889, 271, 317, 197, 613, 607, 127, 257, 89, 367, 223, 433, 239, 911, 109, 107, 557
Offset: 1
Keywords
Examples
The first duplicate in Rowland's sequence of primes A137613 = 5, 3, 11, 3, 23, 3, 47, 3, 5, ... is 3, so a(1) = 3. The second duplicate is 5, so a(2) = 5.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..351
Programs
-
Mathematica
t = {}; b1 = 7; Do[b0 = b1; b1 = b0 + GCD[n, b0]; d = b1 - b0; If[d > 1, AppendTo[t, d]], {n, 2, 10^8}]; L = {}; Do[ If[MemberQ[Take[t, n - 1], t[[n]]], AppendTo[L, t[[n]]]], {n, 2, Length[t]}]; DeleteDuplicates[L]
Extensions
a(12)-a(57) from Giovanni Resta, Apr 08 2016
Comments