cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225488 Murai Chuzen numbers.

Original entry on oeis.org

9, 45, 3, 225, 18, 15, -1, 1125, 1, 99, 495, 33, 2475, 198, 165, -1, 12375, 11, 999, 4995, 333, 24975, 1998, 1665, -1, 124875, 111, 9999, 49995, 3333, 249975, 19998, 16665, -1, 1249875, 1111, 99999, 49995, 33333, 2499975, 199998, 166665, -1, 12499875, 11111, 999999, 4999995, 333333, 24999975, 1999998, 1666665, -1, 124999875, 111111
Offset: 1

Views

Author

Jonathan Sondow, May 10 2013

Keywords

Comments

"Murai Chuzen divides 9 by 1, 2, 3, 4, 5, 6, 7, 8, 9, getting the figures 9, 45, 3, 225, 18, 15, x (not divisible), 1125, 1, -- without reference to the decimal points. Similarly he divides 99 by 1, 2, 3, 4, 5, 6, 7, 8, 9, getting the figures 99, 495, 33, 2475, 198, 165, x, 12375, 11. Next he divides 999 by 1, 2, 3, 4, 5, 6, 7, 8, 9, getting the figures 999, 4995, 333, 24975, 1998, 1665, x, 124875, 111." (Smith and Mikami, expanded and corrected)
Smith and Mikami put "x" whenever a decimal does not terminate. In the data, I put -1 instead of "x".
Murai Chuzen concludes that if 1 is divided by 9, 45, 3, 225, 18, 15, 1125, and 1, the results will have one-digit repetends; if 1 is divided by 99, 495, 33, 2475, 198, 165, 12375, and 11, the results will have two-digit repetends; if 1 is divided by 999, 4995, 333, 24975, 1998, 1665, 124875, and 111, the results will have three-digit repetends; etc.

Examples

			9/1 = 9, so a(1) = 9; 9/2 = 4.5, so a(2) = 45; 9/7 does not terminate, so a(7) = -1; 9/8 = 1.125, so a(8) = 1125; 9/9 = 1, so a(9) = 1.
99/1 = 99, so a(10) = 99; 99/2 = 49.5, so a(11) = 495.
		

References

  • Murai Chuzen, Sampo Doshi-mon (Arithmetic for the Young), 1781.

Crossrefs