This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225502 #13 Mar 16 2018 11:43:44 %S A225502 2,1,2,2,3,3,12,4,9,5,5,30,6,6,20,14,230,23,24,8,8,35,36,9,29,90,30, %T A225502 434,10,159,22,11,140,530,854,147,12,25,77,39,1938509,13,41,69,182,70, %U A225502 14,104,105,60,30,15,15,47,240,65274,6314,16,17009,33,50,68,17,264,371 %N A225502 Least m > 0 such that prime(n)*triangular(m) is a triangular number, or 0 if no such m exists. %C A225502 Conjecture: a(n) > 0. %e A225502 n prime(n) m tri(m) prime(n)*tri(m) %e A225502 1 2 2 3 6 %e A225502 2 3 1 1 3 %e A225502 3 5 2 3 15 %e A225502 4 7 2 3 21 %e A225502 5 11 3 6 66 %e A225502 6 13 3 6 78 %e A225502 7 17 12 78 1326 %e A225502 8 19 4 10 190 %t A225502 lm[n_]:=Module[{m=1,p=Prime[n]},While[!OddQ[Sqrt[8(p (m(m+1))/2)+1]], m++];m]; Array[lm,68] (* _Harvey P. Dale_, Mar 16 2018 *) %o A225502 (C) %o A225502 #include <stdio.h> %o A225502 #define TOP 300 %o A225502 typedef unsigned long long U64; %o A225502 U64 isTriangular(U64 a) { %o A225502 U64 sr = 1ULL<<32, s, b, t; %o A225502 if (a < (sr/2)*(sr+1)) sr>>=1; %o A225502 while (a < sr*(sr+1)/2) sr>>=1; %o A225502 for (b = sr>>1; b; b>>=1) { %o A225502 s = sr+b; %o A225502 if (s&1) t = s*((s+1)/2); %o A225502 else t = (s/2)*(s+1); %o A225502 if (t >= s && a >= t) sr = s; %o A225502 } %o A225502 return (sr*(sr+1)/2 == a); %o A225502 } %o A225502 int main() { %o A225502 U64 i, j, k, m, tm, p, pp = 1, primes[TOP]; %o A225502 for (primes[0]=2, i = 3; pp < TOP; i+=2) { %o A225502 for (p = 1; p < pp; ++p) if (i%primes[p]==0) break; %o A225502 if (p==pp) { %o A225502 primes[pp++] = i; %o A225502 for (j=p=primes[pp-2], m=tm=1; ; j=k, m++, tm+=m) { %o A225502 if ((k = p*tm) < j) { m=0; break; } %o A225502 if (isTriangular(k)) break; %o A225502 } %o A225502 printf("%llu, ", m); %o A225502 } %o A225502 } %o A225502 return 0; %o A225502 } %Y A225502 Cf. A000217, A112456, A225503. %K A225502 nonn %O A225502 1,1 %A A225502 _Alex Ratushnyak_, May 09 2013