A225512 -8-Knödel numbers.
4, 6, 8, 12, 16, 20, 22, 24, 28, 32, 40, 48, 52, 60, 80, 96, 112, 120, 132, 136, 160, 208, 240, 280, 322, 352, 364, 408, 480, 520, 532, 580, 680, 682, 952, 1036, 1120, 1312, 1392, 1456, 1612, 1768, 1840, 2040, 2080, 2332, 2584, 3016, 3172, 3268, 3472, 3640
Offset: 1
Keywords
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Knödel Numbers
Programs
-
Maple
with(numtheory); ListA225512:=proc(q,k) local a,n,ok; for n from 2 to q do if not isprime(n) then ok:=1; for a from 1 to n do if gcd(a,n)=1 then if (a^(n-k)-1) mod n<>0 then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: ListA225512(10^6,-8);
-
Mathematica
Select[Range[10000], CompositeQ[#] && Divisible[# + 8, CarmichaelLambda[#]] &] (* Amiram Eldar, Mar 28 2019 *)
-
PARI
is(n) = if (bigomega(n)>1, for (a=2, n-1, if (gcd(n,a)==1 && Mod(a,n)^(n+8)!=1, return (0))); return (1), return (0)) \\ Rémy Sigrist, Mar 03 2019
Extensions
More terms from Rémy Sigrist, Mar 03 2019
Comments