This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225520 #19 Jun 13 2025 07:42:32 %S A225520 2,4,4,6,4,10,4,8,6,10,4,16,4,10,10,10,4,16,4,16,10,10,4,22,6,10,8,16, %T A225520 4,30,4,12,10,10,10,26,4,10,10,22,4,30,4,16,16,10,4,28,6,16,10,16,4, %U A225520 22,10,22,10,10,4,50,4,10,16,14,10,30,4,16,10,30,4,36 %N A225520 The number of subsets of the set of divisors of n in which elements are pairwise coprime. %C A225520 Note that this is not 1+A048691(n); n=30 is a counterexample. %C A225520 The number of all subsets of the set of divisors (without the restriction) is 2^A000005(n), which therefore is an upper bound of the current sequence. %H A225520 T. D. Noe, <a href="/A225520/b225520.txt">Table of n, a(n) for n = 1..359</a> %e A225520 For n=6, the set of divisors is {1,2,3,6} and the a(6)=10 subsets with pairwise coprime entries are {}, {1}, {2}, {3}, {6}, {1,2}, {1,3}, {1,6}, {2,3} and {1,2,3}. %p A225520 paircoprime := proc(s) %p A225520 local L,i,j ; %p A225520 L := convert(s,list) ; %p A225520 for i from 1 to nops(L)-1 do %p A225520 for j from i+1 to nops(L) do %p A225520 if igcd(op(i,L),op(j,L)) <> 1 then %p A225520 return false; %p A225520 end if; %p A225520 end do: %p A225520 end do: %p A225520 return true; %p A225520 end proc: %p A225520 A225520 := proc(n) %p A225520 local dvs,a,p ; %p A225520 dvs := numtheory[divisors](n) ; %p A225520 a := 0 ; %p A225520 for p in combinat[powerset](dvs) do %p A225520 if paircoprime(p) then %p A225520 a := a+1 ; %p A225520 end if; %p A225520 end do: %p A225520 a ; %p A225520 end proc: %t A225520 Table[Length[Select[Subsets[Divisors[n]], If[Length[#] < 2, True, If[Length[#] == 2, CoprimeQ @@ #, And @@ CoprimeQ @@ #]] &]], {n, 100}] (* _T. D. Noe_, May 09 2013 *) %Y A225520 Cf. A076078 (subsets with lcm equal to n), A084422 (subsets of 1 through n). %K A225520 nonn %O A225520 1,1 %A A225520 _R. J. Mathar_, May 09 2013