This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225542 #26 Sep 06 2021 05:03:22 %S A225542 1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,2,0,0,0,0,1,1,1,1, %T A225542 1,1,1,1,0,1,1,1,1,1,1,2,1,1,0,0,1,1,1,1,1,2,1,1,1,0,1,0,0,0,0,0,0,1 %N A225542 Number T(n,k,u) of partitions of an n X k rectangle into integer-sided square parts containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,u), 1 <= k <= n, u >= 0, read by rows. %C A225542 The number of entries per row is given by A225568. %H A225542 Christopher Hunt Gribble, <a href="/A225542/b225542.txt">Rows 1..36 for n = 1..8 and k = 1..n flattened</a> %H A225542 Christopher Hunt Gribble, <a href="/A225542/a225542.cpp.txt">C++ program</a> %F A225542 T(n,n,u) = A227009(n,u). %F A225542 Sum_{u=1..(n-1)^2} T(n,n,u) = A034295(n). %e A225542 The irregular triangle begins: %e A225542 n,k\u 0 1 2 3 4 5 6 7 8 9 10 11 12 ... %e A225542 1,1 1 %e A225542 2,1 1 %e A225542 2,2 1 1 %e A225542 3,1 1 %e A225542 3,2 1 1 %e A225542 3,3 1 1 0 0 1 %e A225542 4,1 1 %e A225542 4,2 1 1 1 %e A225542 4,3 1 1 1 0 1 %e A225542 4,4 1 1 1 1 2 0 0 0 0 1 %e A225542 5,1 1 %e A225542 5,2 1 1 1 %e A225542 5,3 1 1 1 0 1 1 %e A225542 5,4 1 1 1 1 2 1 1 0 0 1 %e A225542 5,5 1 1 1 1 2 1 1 1 0 1 0 0 0 ... %e A225542 ... %e A225542 For n = 5 and k = 4 there are 2 partitions that contain 4 isolated nodes, so T(5,4,4) = 2. %e A225542 Consider that each partition is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors. Then the 2 partitions are: %e A225542 1 1 1 1 1 1 1 1 1 1 %e A225542 1 0 1 0 1 1 0 0 1 1 %e A225542 1 1 1 1 1 1 0 0 1 1 %e A225542 1 0 1 0 1 1 1 1 1 1 %e A225542 1 1 1 1 1 1 1 1 1 1 %e A225542 1 1 1 1 1 1 1 1 1 1 %Y A225542 Cf. A034295, A224697, A227009, A225777, A225803, A225568. %K A225542 nonn,tabf %O A225542 1,26 %A A225542 _Christopher Hunt Gribble_, Jul 28 2013