cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225550 Primes p such that p^2 mod 37 is prime.

This page as a plain text file.
%I A225550 #15 Sep 08 2022 08:46:05
%S A225550 23,59,83,89,97,139,157,163,199,281,311,347,379,421,467,503,509,541,
%T A225550 569,577,601,607,643,823,829,911,947,953,971,977,1013,1021,1051,1087,
%U A225550 1193,1249,1429,1471,1489,1531,1613,1619,1637,1693,1753,1873,1901,1933,2063,2081,2087,2131,2137,2161,2243,2309,2377,2383,2531
%N A225550 Primes p such that p^2 mod 37 is prime.
%C A225550 Or, primes p == {9, 14, 15, 22, 23, 28} (mod 37).
%C A225550 Corresponding values p^2 (mod 37): 11, 3, 7, 3, 11, 7, 7, 3, 11, 3, 3, 11, 7, 11, 11, 3, 7.
%F A225550 a(n) ~ 6n log n. - _Charles R Greathouse IV_, May 10 2013
%e A225550 23^2 = 529 and 529 mod 37 = 11 (prime).
%t A225550 Select[Prime[Range[2400]], PrimeQ[PowerMod[#, 2, 37]] &]
%o A225550 (PARI) forprime (p = 2, 2351, isprime (p^2 %37) & print1 (p ", "))
%o A225550 (Magma) [p: p in PrimesUpTo(3000) | IsPrime(p^2 mod 37)]; // _Bruno Berselli_, May 10 2013
%Y A225550 Cf. A045432.
%K A225550 nonn,easy
%O A225550 1,1
%A A225550 _Zak Seidov_, May 10 2013